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We are discussing the working principle of a Multilayered Feed-Forward Neural 

Network. Now, supposing that I have got a process, whose input-output modeling has to 

be done, that means, for a known set of inputs what should be the set of outputs that we 

will have to determine.  

Now, the first thing will have to do is, we will have to identify the input parameters and 

the output variables. Now, these input parameters are to be independent and this would 

be measurable. Now, here if you once again see the schematic view of this multilayered 

feed-forward network, we can see that, this is the input layer through which we pass the 

set of inputs and these inputs are to be in the normalized scale either in the scale of 0 to 1 

or from minus 1 to plus 1. Now, how to represent in the scale of 0 to 1 or minus 1 to plus 

1; that I have already discussed and here, so this is nothing but the output layer and on 

the output layer, say we have got say P number of neurons.  

Now, this output could be either independent and they could be dependent on each other, 

also. Now, here you see the connecting weights between the input and the hidden layer is 



denoted by V and that between the hidden and the output layer is denoted by W. And, we 

have already mentioned the range for the connecting weights could be either from 0 to 1 

or from minus 1 to plus 1. 

Now, here, for this particular process, the number of inputs, that is, M is kept fixed and 

similarly, the number of outputs of this particular process is also known. So, the number 

of neurons in the input layer, that is nothing but the number of input parameters and the 

number of neurons on the output layer is nothing but your, the number of outputs. So, the 

number of neurons in the input layer and the number of neurons in the output layer are 

known, these are kept fixed. 

Now, the architecture of this particular network depends on the number of hidden layers 

and the number of neurons you put in each of the hidden layers. Now, here, you can see, 

for simplicity, we have considered only one hidden layer and this hidden layer is having 

say capital N number of neurons. Now, how to decide the number of hidden layers or 

how to decide this particular architecture? So, that I am going to discuss a little bit. 

Now, before we start that, let me mention that there is no guarantee that we can ensure 

more accuracy to this particular network by increasing the number of hidden layers. That 

means, if I use one hidden layer for modeling input-output process and by using the same 

training set, if I develop another network having say two hidden layers, the network 

having two hidden layers actually cannot give guarantee that it is going to give more 

accurate predictions. 

Now, how to decide? Now, to decide this actually, what you do is, the first thing we will 

have to decide that what should be the minimum number of neurons in this particular, the 

hidden layer. And, let me assume that there is only one hidden layer and the minimum 

number of neurons to be put in the hidden layer is equal to 2. The reason is, if you do not 

put the minimum number as 2, we may not be able to capture the nonlinearities of this 

particular process. So, to capture the nonlinearity of this particular process, the minimum 

number of neurons to be put in the hidden layer is kept equal to 2. 

Now, what should be the optimal number? What should be the optimal number of this 

particular neurons in this hidden layer? Now, to decide that actually, we will have to 

carry out one parametric study. Now, before I go for discussing the method of this 

parametric study, let me once again mention that the performance of this particular 



network depends on a number of parameters of course, it depends on the connecting 

weights, that is, V and W. 

Now, besides these particular the V and W matrices, the performance of this particular 

network depends on the number of the neurons, which we are going to put in the hidden 

layer, that is denoted by capital N, or the number of the neurons, we put on this particular 

the hidden layer, that is, N and it depends on the bias value. Now, for simplicity, we have 

not shown the bias value, but it depends on the bias value. Now, if you want to put the 

bias value, so we will have to put that particular the bias value. So, I can put this 

particular the bias value, here. 

It depends on the coefficient of transfer function, that is, a_1 that means, your this log 

sigmoid transfer function. It also depends on the coefficient of transfer function of the 

output layer, that is nothing but a_2, and so on. So, these are the parameters for which we 

will have to determine the set of optimal values.  

Now, to carry out this parametric study actually, what you do is, we first try to fix the 

range of each of these particular parameters. For example, to fix the range, the minimum 

number is kept equal to 2. Now, supposing that I am just going to put the range for N we 

say 2 to say 20. Now, I can also put the range for this particular b. So, might be it is 

0.001 to say 0.01 something like this and for this a_1 and a_2, I can also put the range, so 

might be it is from 0.5 to say 5.0, and so on. 

Now, once you have decided these particular ranges for the parameters, now we are in a 

position to start the parametric study and the purpose of parametric study is to decide, 

what should be the topology of this particular network. And, what should be the 

parameters, the other parameters and let me repeat that this connecting weight values, 

those are generated in the normalized scale using the random number generator.  

Now, let us see, how to carry out this particular the parametric study. Now, the first thing 

we will have to do is, we will have to vary the number of the hidden neurons starting 

from 2 to 20 say and regarding the other parameters like your b, a_1 and a_2. So, we try 

to find out their mid values and these parameters are set to their corresponding mid-

values and I am just going to vary the number of neurons to be present in the hidden 

layer. 



Now, if I carry out this particular study so there is a possibility that I will be getting. 
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So, with the results of this study, what you can do is, you can plot say the error of this 

particular network, that is error in prediction, and here, we have got the number of 

neurons to be put in the hidden layer and we keep some fixed value for say b, we keep 

some fixed values for a_1 and a_2.  

Now, what we do is, we start with the two number of hidden neurons. So, say this is 

going to indicate the number of hidden neurons, so I will be getting some error. So, error 

could be here, then I use like three number of hidden neurons, might be the error could 

be here, then I use the four number of hidden neurons might be the error could be here. 

So, what we do is, we try to find out the nature of the performance of this particular  

network. 

And, then, we try to select that number of hidden neurons, which gives actually the 

optimal performance in terms of error in prediction. Now, supposing that, say this is the 

number of neurons corresponding to which I am getting the optimal performance. Now, 

what you do is, the value of N is kept fixed to this particular value and next, we go for 

the variation of this particular b. 
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Now, what we do is, so exactly in the same way, we carry out the study. So, now, here 

there will be error and here there will be the bias value and N is kept fixed to the optimal 

value, which you have already determined in the previous step. And, a_1 is kept fixed 

with mid value, a_2 is kept fixed with mid-value and once again, for different values of 

b, so we try to find out the error and we try to locate that value of b corresponding to 

which, we are getting the minimum error. So, we select the near-optimal value for this 

particular the b. 

Next we start this particular study by wearing this particular a_1 and we try to find out 

what should be the optimal or the near optimal value for this particular a_1. Next, we 

start, this particular study actually with the variation of this particular a_2 and we try to 

find out what should be the near optimal value for this particular the a_2.  

So, by carrying out this particular study, so we can find out what should be the near 

optimal value for this particular the number of hidden neurons, what should be near 

optimal value for this particular the bias value, then comes what should be the near 

optimal value for this a_1 and the near optimal value for this particular a_2. And once 

you have got this particular thing, now we are in a position to decide at least 

approximately, what should be the topology of this particular network and what should 

be the other parameters. 



Now, here I just want to make a comment, this process of carrying out the parametric 

study is an approximate one, because here, the performance of this network depends on 

all the parameters simultaneously. But, what we did is, we consider one parameter at a 

time that means, this is an approximate way of determining the near optimal parameters 

of this particular the network. So, this is the way actually, we can approximately 

determine like, what should be the topology and what should be the other parameters for 

this particular the network.  

Now, as I discussed in my last lecture that this particular network has to be trained and if 

I go for the supervised learning, this supervised learning actually can be implemented 

either in the incremental mode of training or in the batch mode of training. 
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Now, I am not going to repeat because this I have already discussed in much more details 

that the principles of the incremental training, the batch mode of training, their relative 

merits and demerits, these things we have already discussed. But, now, I am just going to 

concentrate a little bit on the batch mode of training for this supervised learning.  

Now, supposing that in batch mode of training, say I have got a large number of training 

scenario say capital L number of training scenarios. And, as I mention several time, out 

of these capital L, the first one I am just going to pass and depending on the connecting 

weights, the coefficient of transfer function and other things, so I will be getting the set 

of outputs. 



Now, this set of calculated outputs will be compared with the respective target values 

just to find out the error. And, once you have got error at each of this particular output 

neurons, I can find out what should be the combined error and that corresponds to a 

particular training scenario. Then, we take the help of the second training scenario, I will 

be getting another, the total error here. 

Then, the third one we put their and I just go for the L-th training scenario and once you 

have passed all these L training scenarios, I will be able to find out, what is the total 

error, what is the average error and based on this particular, I will have to propagate 

back, so that I can modify the different variables and ultimately through a large number 

of iterations, I get that particular optimal or the near-optimal network.  

Now, here I just want to make a point like, if I just go for the batch mode of training, we 

will have to be careful that we have used sufficient number of training scenarios. Now, 

supposing that, this particular network is having say approximately, say 100 design 

variables. Now, if it is having 100 design variables or your parameters, which are to be 

optimized, whose modified values are to be determined. So, what will have to do is I will 

have to pass at least 100 training scenarios. So, either 100 or slightly more than 100 

training scenarios I will have to pass, while carrying out the batch mode of training. 

Now, let us see, what happens if I just pass say less number of training scenario, this I 

have already mentioned and let me try to repeat once again. Now, supposing that I have 

got 100 design variables. Now, if I pass say 90 training scenarios that is a case of the 

under-training of these particular the network. That means, mathematically, if you want 

to put, supposing that I have got 10 unknowns and I have got say 9 equations. So, if the 

10 unknowns and nine equations we cannot solve mathematically the same thing is to 

here, if I have got less number of training scenarios compared to the number of 

unknowns, this will be a clear example of your under-training. 

And, if there is under-training for this particular network and if I pass a set of inputs, will 

be getting some output for this particular output cannot be actually believed and this 

network actually does not know anything of the physical problem. So, if you just pass 

say one set of training scenarios, we are going to get the outputs for a set of inputs. But, 

this particular input-output relationship may not be reliable.  



Now, on the other hand, if I use a very large number of training scenarios and if I train 

this particular network through a large number of iterations, now let us see what 

happens. Now, if I just train this particular network for a large number of iterations using 

a very large number of training scenario, supposing that I have got only 100 design 

variable and if I use 1000 training scenario and train this particular network for a very 

large number of iterations, say 5000 iterations. What will happened to this particular the 

network? Will this network be going to give a very good performance? The answer is no. 

Now, here, there will be some sort of overtraining. So, this overtraining is also actually is 

not good for this particular network and the reason, I am just going to discuss in details. 

Now, if there is overtraining, this particular network will try to remember actually the 

training scenarios and what will happen; the moment we pass the unknown test 

scenarios, it will try to remember only the training scenario and it may not perform in the 

optimal sense for the unknown test scenarios, because its adaptability will be lost or its 

generalization capability will be lost, if I just go for the overtraining. 

Now, as I told this particular network should have a very good generalization capability. 

So, this generalization capability is actually a desired property for this particular network 

and if you want to ensure; so what will have to do is. So, we should not go for under-

training and we should not go for overtraining, and in other words, actually we should go 

for a perfect training for this particular network.  

Now, supposing that so we have selected the number of training scenarios required for 

carrying out the batch mode of training and while carrying out this particular batch mode 

of training, there is a possibility that we will be a facing another problem now, that 

problem actually I am just going to explain which I have learnt from my own practical 

experience. So, this, I am going to discuss.  

Now, supposing that I am carrying out the batch mode of training for this supervised 

learning and I am using the suitable number of training scenarios, and I am using the 

generalized delta rule, the back propagation algorithm that is nothing but supposing that I 

want to update this particular the connecting weight.  
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So, what I will have do is, so ( 1)k
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. This is actually the 

generalized delta rule. This I have already discussed.  

Now, using this generalized delta rule, I will have to update this connecting weights. 

And, I have already discussed that η  is nothing but the learning rate and it has got the 

range of 0 to 1, then α′  is nothing but the momentum constant, and the purpose of using 

the momentum constant I have already discussed. If you want to provide some sort of 

damping effect to the network and if you want to provide some sort of cushioning effect 

to this particular network, we will have to use this particular your momentum term. 

Now, here there is one mathematical reason, why do you put this particular your the 

momentum term. Now, supposing that the way we updated this particular network is 

nothing but ( ) ( )jk jk jkW updated W previous W= + ∆ . So, this is the way actually we 

update. Now, supposing that this particular delta W value is found to be positive for a 

large number of consecutive iterations.  

Now, this W∆  it could be either positive or negative, but fortunately or unfortunately 

say I am getting the positive values for a large number of consecutive iterations. Then, 

what will happen to this particular your jkW∆  updated?. Now, there is a possibility that 

this particular jkW∆  will come out of the range that means, it will become say greater 



than 1, supposing the this is becoming w is becoming say 1.5, whereas the maximum 

limit for this W is 1. Now, what will happen to this particular network? 

Now, as I mention several times that network does not know anything of the physical 

problem. Now, even if the W has come out of the range or the V has come out of the 

range, if you pass the set of inputs, the network is going to give you the output, but that 

particular output may not be reliable, because these particular connecting weight values 

have come out of the range. And, if this is the situation, that particular situation is 

actually known as actually the stability problem of this particular network. That means, 

the network has become unstable, it has lost its balance and so this particular network is 

going to behave in a very the erratic way and you may not get a very good prediction for 

a set of inputs.  
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Now, here, we can put one remedy, the remedy is something like this. So, if W or V 

becomes greater than 1, so it has become out of range. So, what you do is, in place of W 

what you put is, 1 divided by W or in place of V, you put like 1 divided by V. So, by 

doing that actually, what you can do is, W becomes greater than 1. Now, 1 divided by W 

will be less than 1, the same is true for your V and 1 by V and by doing that, once again 

forcefully we are going to put that particular limit within the range and what will happen 

is, your network once again will try to become stable. 



But, if you see this particular performance like if I just say this is error and what will 

happen the moment you put this particular correction, there will be a sharp change of this 

particular performance and after that, it will reach once again the stable region. And, 

once again, if it becomes out of range like V and W and if you put this particular 

correction, so once again, it will have this type of erratic behavior and then, it will try to 

reach that particular stable zone. Now, within this particular erratic behavior zone, we 

cannot believe the network, and we will have to believe in this particular range and if 

you want to use this network for making some predictions.  
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So, these are all actually the facts, which we should understand, if we want to design a 

very efficient multilayer feed forward network. Now, I am just going to quickly look into 

the merits and demerits of this multilayer feed forward network. Now, this particular 

multilayer feed forward network can handle a large number of variables. 

Now, if you remember while discussing the fuzzy reasoning tool, we have already 

discussed that if the number of input parameters increase and handling or modeling that 

particular process using fuzzy reasoning tool will be more difficult, because the number 

of rules is going to increase exponentially. For example, say this I have already 

discussed, if a particular process is having say n number of input parameters and to 

represent each input parameter, if I use m linguistic terms in fuzzy reasoning tool. So, 



what will happen? The total number of rules become nm , it is a very high number large 

number and this is known as the curse of dimensionality. 

Now, here for the same problem if I use the multi-layered feed forward network, so we 

will be getting efficient modeling. So, in place of this fuzzy reasoning tool we can use 

this multilayered feed forward network. The next is, it may not require so much problem 

information, which you need in fuzzy reasoning tool or fuzzy logic controller because 

while discussing the fuzzy reasoning tool, we have already discussed that its 

performance depends on the database and the rule base. 

And, if the designer wants to design initially the database and the rule base of the fuzzy 

reasoning tool, he or she should know or he or she should have at least some initial 

information of the process to be controlled. But, here, in neural network training, we may 

not need so much problem information. Now, based on the experiments, if you can 

collect some input-output relationships that you can directly used to train the network 

and once it is trained the network will be able to predict the input output relationships in 

a very efficient way.  

Now, disadvantages of the multilayer feed forward network or demerits. The solution of 

this back propagation neural network that is that multilayered feed forward network 

trained using back propagation algorithm, the solution may get stuck at the local minima. 

So, this I have already discussed, because initially we do not know what should be the 

nature of the training nature of the error surface during the training. Now, if the error 

surface is found to be unimodal. So, this back propagation algorithm, which is nothing 

but the steepest decent algorithm is going to hit the globally minimum solution very 

easily. 

But, supposing that the nature of the error surface is such, it is having multiple modes 

there are many such ups and downs, so in that case there is a possibility, the solution of 

this back propagation neural network or multilayered feed forward network trained using 

back propagation algorithm may get stuck at the local minima and it may not be able to 

reach the globally minimum solution.  

Now, if you see the computational complexity, the training complexity of a neural 

network and the training complexity of a fuzzy reasoning tool, the training complexity of 

the multilayered feed forward network is more compared to the computational 



complexity of the fuzzy reasoning tool. So, the training of neural network is 

computationally more complex compared to that of the fuzzy reasoning tool. 

And, there is another drawback, I should say that is your this particular multilayered feed 

forward network is nothing but a black box. For example, say we have got a set of 

training scenarios and we train a particular the network. Now, for training, what you 

need is for a set of training input parameters, what should be the set of output parameters 

and if those relationships are known for a large number of training scenarios, we can 

train the network, but during the training what is happening inside the network, we, the 

designers, do not know. But, ultimately through a large number of iterations, it is going 

to give rise to one optimal or the near optimal network. So, this particular multilayered 

feed forward network works like a black box. 

Thank you. 


