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So, this is the multilayer feed forward network. I am supposing that we have passed say 

one set of training scenarios here, now if I pass one set of training scenarios and we have 

discussed like how to get this calculated output, and we have seen how to determine this 

particular error of the kth output neuron. Now, based on this particular error, this error 

has to be propagated back; so, I will have to update this particular w_jk and here, we 

have got the connecting weight say V_ij. Now, let us see how to update. 

Now, to update that actually, what you do is, we try to move in the backward direction 

and the moment it reaches here we will stop. Now, here to update this V_ij, so starting 

from this particular error. I will propagate it back and the moment it reaches here, I am 

going to stop. And, another thing I am just going to tell you that this particular w_jk has 

got some contribution on the output of this particular kth neuron, but it has got no 

contribution towards the output of the other output neurons. So, w_jk has got 

contributions towards the output of this kth output neuron, that means, if I want to update 

this w_jk, I will have to consider only the kth output neuron and its error. 



On the other hand, if I want to update this particular V_ij. So, depending on the V_ij, I 

will be getting some output here. Now, this particular H_Oj has got at least some 

contribution of this particular V_ij. And, here, this H_Oj is connected to all the output 

neurons, so whatever outputs we are getting at the different neurons of the output layer. 

So, this particular V_ij has point has got at least some contribution. That means, if I want 

to update this particular V_ij, I will have to consider the average error of this particular  

output neuron. On the other hand, if I want to update only w_jk, so I will have to 

consider the error of only this kth output neuron. So, I think, I am clear. 

Now, with this particular understanding, so let me start with the principle of your the 

incremental training and let us see how to use the principle of incremental training.  
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The principle of which, I have already discussed in details, now I am just going to 

discuss how to update this particular w_jk. Now, w_jk is nothing but the connecting 

weight between the jth hidden neuron and the kth output neuron. Now, this 

, ,jk updated jk previous jkw w w= + ∆ . Now, this k
jk

jk

Ew
w

η ∂
∆ = −

∂
.  

Now, let us see how to determine this particular partial differentiation, that is your 

k Ok IK

jk Ok IK jk

E O OE
w O O w
∂ ∂ ∂∂

=
∂ ∂ ∂ ∂

. So, we are going to use actually the chain rule of 



differentiation. So, the chain rule of differentiation, we are going to use just to find out 

what should be this particular k

jk

E
w
∂
∂

.  

Now here, this 21 ( )
2k Ok OkE T O= − . Now, if I try to find out the partial derivative of this 

particular O_Ok, so I will be getting actually del E_k del O_Ok is nothing but your 2 

multiplied by 1/2 multiplied by minus 1 then comes your T_Ok minus O_Ok. So, this 2, 

2 gets cancel. So, this is nothing but T_Ok minus O_Ok. So, this is the way actually, we 

can find out. So, this partial derivative is nothing but ( )Ok OkT O− − . So, this is the way 

actually, this first partial derivative we can find out.  

Now, we will have to find out the partial derivative of O_Ok with respect to your O_Ik 

and if you remember actually on the output layer, we use actually your the tan sigmoid 

transfer function.  
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Now, if you use tan sigmoid transfer function, so very easily, you can find out what 

should be the derivative. Now, let me concentrate on how to find out the derivative of 

this particular the tan sigmoid transfer function.  



Now, if you just write down the expression like you have 
2 2

2 2

a x a x
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−

−

−
=

+
. Now, if you 

find out the derivative, that is, 2 (1 )(1 )dy a y y
dx

= + − . So, we can find out this particular 

derivative and all of us you know, how to find out the derivative with respect to x and if 

you simplify, so you will be getting this particular the expression where y is nothing but 

this particular the expression.  

The same thing, we have copied it here, just to find out 2 (1 )(1 )Ok
Ok Ok

Ik

dO a O O
dO

= + − . So, 

very easily, you can find out this particular partial derivative. Now, then comes here the 

partial derivative of O_Ik with respect to your w_jk. Now, here, if you remember, so this 

O_Ik is what? That is nothing but the input of the kth neuron lying on the output layer, 

and if you just find out that particular expression that is your O_Ik there will be a few 

terms and in fact, there will be a few terms, but at the middle almost we will be getting a 

term that is nothing but H_Oj multiplied by your W_jk and there are a few other terms. 

Now, what is this? This is nothing but the output of the jth neuron lying on the hidden 

layer multiplied by the connecting weight, that is your w_jk. Now, if I find out the partial 

derivative of O_Ik with respect to your w_jk. So, definitely I will be getting this 

particular H_Oj. So, very easily we can find out all the derivatives. And, once you have 

got all the derivatives, now you are in a position to determine what is k

jk

dE
dw

. So, we 

substitute all the values, all the expressions, and then we will be getting this particular 

the final expression. 

And, once you got this particular final expression of the partial derivative. So, we can 

find out jkw∆  is η−  multiplied by this particular partial derivative. So, I will be getting 

η  a_2 (T_Ok minus O_Ok)(1 plus O_Ok) (1 minus O_Ok) multiplied by H_Oj. So, very 

easily, we can find out what should be this particular change in w.  
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Now, once you have got the change in w. Now, we are going to discuss like your how to 

find out the change in V matrix. Now, let me concentrate on V_ij that is nothing but the 

connecting weight between the ith input neuron and jth hidden neuron. So, 

, ,ij updated ij previous ijV V V= + ∆ , and I have already discussed that this particular delta V_ij, if I 

want to determine. 

So, we will have to consider the average effect, av stands for average. So, 

{ }ij av
ij

EV
V

η ∂
= −

∂
. Now, how to find out this particular expression? Del E/del V ij average 

is nothing but summation k equals to 1 to P. In fact, this would be your capital P, the 

notations which are using. So, 
1

1{ }
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Now, once you have got this particular expression, you will see how to determine, in 

fact, your this Oj Ijk k Ok Ik

ij Ok Ik Oj Ij ij

H HE E O O
V O O H H V

∂ ∂∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
. Now, we have already discussed, how 

to determine, this partial derivatives, that is partial derivative of E_k with respect to 

O_Ok, that is nothing but this particular expression. We have also seen how to determine 

this particular expression of partial derivative and that is nothing but this particular 

expression.  
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And, now I am just going to discuss, how to find out the next one, that is, Ik
jk

Oj

O w
H
∂

=
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that also we have seen. Now, I am just going to find out the partial derivative of H_Oj 

with respect your H_ij that means, output of jth neuron lying on the hidden layer and this 

is the input of jth neuron lying in the hidden layer.  

Now, in the hidden layer actually, we have used one log sigmoid transfer function, which 

is nothing but 
1

1
1 a xy

e−=
+

. And, if you find out its derivative that is 1 (1 )dy a y y
dx

= − . 

And, once you got this particular expression, very easily, you can find out the 

1 (1 )Oj
Oj Oj

Ij

H
a H H

H
∂

= −
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. And, the last term that is your Ij
Oi Ii

ij

H
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V
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, that is output of 

the ith neuron laying in the input layer and this is nothing but the input of the ith neuron 

lying in the input layer, so I can find out this particular expression. 
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And, once we have got it, now we can find out what is partial derivative of E_k with 

respect to V_ij and this is nothing but this particular the big expression. And, once you 

have got it, now we can also find out actually what should be your this particular V_ij. 

Now, V_ij is, in fact, nothing but your this particular expression. So, this is your this 

{ }av
ij

E
V
∂
∂

is nothing but this and we have already discussed how to determine this 



particular thing and once you know this, I can find out this average and once I know this 

average I can multiply by η  and put one negative side, that is nothing but is your change 

in V ij.  

So, we are in a position using this particular your differential calculus just to find out, 

what should be the change in connecting weights or the updated values for this particular 

the connecting weights using the incremental mode of training.  
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Now, I am just going to discuss the batch mode of training. Now, this batch mode of 

training and its principle I have already discussed that supposing that I have got a large 

number of training scenario say capital L number of training scenarios. Now, if I got 

capital L number of training scenarios, what you do is, we pass all the training scenarios 

one after another and we try to find out, what is the error corresponding to the each of the 

training scenarios, we try to find out how much is the total error, we also try to calculate 

what is the average error and based on this particular average error, we update the 

network only once.  

Now, let us see, how to implement this. Now, let us consider, there are capital L number 

of training scenarios. So, mean squared deviation in prediction for the kth output neuron 

that can be written as that is 2

1

1 1 ( )
2

L

Okl Okl
l

E T O
L =

′ = × −∑ ; and here actually, what will 

have do is, once again we will have to update the w_jk and v_ij, that is the connecting 



weights between the hidden neurons and output neuron, and that between the input and 

the hidden neurons.  

Now, let us see, how to update this particular w_jk. Now, this delta w_jk is nothing but 

minus eta multiplied by partial derivative of E^prime with respect to your w_jk. Now, 

how to determine this particular partial derivative? To determine the partial derivative, I 

am once again using the chain rule of differentiation. So, this del E^prime del w_jk is 

nothing but del E^prime del E_l that means, the error corresponding to the small lth 

training scenario then comes the rate of change of E_l with respect to your E_k then 

comes your the partial derivative of E_k with respect to O_Ok, partial derivative of 

O_Ok with respect to O_Ik, partial derivative of O_Ik with respect your w_jk.  

Now, here I just want to mention one thing. Now, regarding the last three terms, for 

example, these three terms we can find out some numerical values, ok. So, ultimately 

you will be getting some numerical values. But, the first two terms, that means, your this 

particular partial derivative, it indicates only the rate of change of E^prime with respect 

to the lth training scenario, and, the rate of change of error with respect to the lth 

scenario, with respect to your the E_k (that is the error of the kth output neuron) are used 

just to tell you that we will have to sum all such things, but you may not get the direct 

numerical value corresponding to this first term and this particular the second term. But, 

starting from the third up to the fifth term, you will be getting some numerical values. 

Now, this is the way actually, we will have to find out the partial derivative of E^prime 

with respect your the w_jk.  
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Now, then comes here, how to update the v_ij. Now, this ijv∆  is nothing but minus η   

the partial derivative of E^prime with respect to v_ij average. And, this particular del 

E^prime/del v_ij average is nothing but summation k equals to 1 up to P, del E_k^prime 

del v_ij and will have to sum them up and then will have to multiplied by one divided by 

capital P. So, this is the way actually, we can find out the average of this particular 

partial derivative. And, how to find out this del E_k^prime/del v_ij. So, this 
' '

Oj Ijk k kl Ok Ik

ij kl Ok Ik Oj Ij ij

H HE E E O O
v E O O H H v

∂ ∂∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂
. Now, we have already discussed like how to 

find out these derivatives and I can also find out the numerical values corresponding to 

each of the partial derivatives. But, once again, the first, this particular component, that is 

the partial derivative of E_k^prime with respect to your E_kl, you may not be able to 

determine the numerical value, but it indicates the rate of change of E_k^prime with 

respect to E_kl. Similarly, this is nothing but your the rate of change of E_kl with respect 

your O_Ok. Now, these two terms is going to help us or going to tell us that you find out, 

this particular expression for each of the training scenarios and you sum them up, just to 

find out the total effect and, so that we can find out the average effect for updating of that 

particular the connecting weights.  

Now, once you have got this particular derivative using this formula, I can find out this 

average and once I have got this particular average. So, I will be able to find out what 



should be the change in v_ij. So, this is the way actually, we can update the connecting 

weights using actually the batch mode of training. 
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Now, supposing that we know the updated values for the connecting weights. Now, if 

you see this particular rule, now let me just write it here, for example, say the change in 

w is nothing but (let me repeat) as Ew
w

η ∂
∆ = −

∂
. Now, if I follow this particular rule that 

is called the delta rule. Now, there is a possibility that this particular partial derivative, it 

could be either positive or negative. But, this η  is always positive and it is lying in the 

range of 0 to 1. Now, this η  is positive, but this partial derivative could be either positive 

or negative. Now, supposing that it has become negative and here, I have got another 

negative side so that will make the  w∆  is actually a positive value in some of the 

iterations.  

Now, that means, while updating this particular w, if I just go on adding some numerical 

values. So, after running this particular algorithm for a large number of iterations, there 

is a possibility that the value for the w may come out of the range. For example, the 

range is 0.0 to 1.0, another range could be minus 1.0 to plus 1.0. Now, if I just go on 

adding, so this particular updated value then what will happen actually is this weight may 

go out of the range and the network may lose the stability or the balance. Now, neural 

network actually does not know anything of the physical problem. So, if it is wrongly 



trained, then also it is going to give some results, but we will have to be careful that the 

stability of this particular network should be maintained, that means, your w should not 

exceed its own range.  

Now, supposing that w is found be greater than 1, in that case, we will have to use some 

correction and that correction is something like this. So, what I will have to do is, if w is 

found to be greater than 1. So, I am just going to put 1 divided by w. Now, if I consider 1 

divided by w, this will become less than 1 and once again, I can change this particular 

network for more iterations. The moment I put 1 divided by w in place of w, there could 

be a sudden change in the performance of the network, but after a few iterations, once 

again it is going to reach that particular the balanced region and this particular network 

can be believed, only it is working in that particular the balanced region.  

Now, to overcome this particular problem, so that w does not become greater than 1, so 

what we do is, we use the generalized delta rule and that is nothing but is your delta w 

(t), (t indicates t-th iteration) is nothing but minus η  multiplied by the partial derivative 

of E with respect to w corresponding to the t-th iteration plus alpha^prime multiplied by 

w∆  (t - 1). So, this particular extra term we are going to add and α′  is known as the 

momentum constant and the range for the momentum constant is once again from 0 to 1, 

and what we do is, we try to see: what was the change of w in the previous iteration that 

is nothing but (t minus 1)-th iteration. That means, we try to see the history of this 

particular the updated weight that means, what happens at (t minus 1)-th iteration to this 

particular w∆ , that I am going to consider.  

Now, if I consider then there is a chance that I am going to provide some sort of damping 

effect to this particular network or I am just going to put some sort of cushioning effect 

to this particular network, so that the w does not exceeds it range, but if I follow this 

once again there is no guarantee that the connecting weight will lie within its range, if the 

network is running for a large number of iterations, so it may once again go out of this 

particular range. And, if it goes out of the range, this is actually the remedy.  

Now, as I told, just to put some sort of damping effect to this particular network, we 

consider its history that means, what happens to the previous iteration, we want to give 

some weightage to this particular change in connecting weight, just to find out, what 



should be your the updated weight. So, this is the way, we can update, this particular the 

network.  
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Now, a few notes here I have put, I just want to mention. Now, this multilayer feed 

forward network trained with the help of this back-propagation algorithm, that is the 

delta rule or the generalized delta rule, there is a possibility that there will be a local 

minima problem. The reason is very simple because it works based on the steepest 

descent algorithm and that means, it is going to use the information of the gradient.  

Now, supposing that say I have a very complicated error function with so many such ups 

and downs and undulations. Now, what you do is, while minimizing the error, this 

particular algorithm will try to find out the search direction, which is opposite to the 

gradient. Now, gradient is a local property. So, there is a chance that it is going to get 

stuck at the local minima, and it will not be able to reach that particular your globally 

optimal solution and this back propagation algorithm is actually having a chance of local 

minima. And, the transfer function has to be differentiable because we are using the 

gradient information, and at the point of discontinuity, in fact, we will not be able to find 

out the gradient of this particular objective function or the error function.  

Now, this back propagation neural network or multilayer feed forward network trained 

using the principle of back propagation algorithm, may not be able to capture the 

dynamics of a highly complex or highly dynamic process and that is why, actually we 



will have to go for some feedback circuit, which I will be discussing in details, that 

means, will have to go for the recurrent network. Those things will be discussed in much 

more details, while discussing the recurrent networks.  

Inputs are to be normalized I have already mentioned the range for the connecting 

weights have already mentioned, and actually, we will have to find out some 

convergence criteria for this particular the algorithm during the training. Now, if the rate 

of change of error in prediction becomes less than or equal to some pre-specified small 

value, we say that the network has reached that particular optimal situation and we 

consider that particular network is an optimal network.  

Now, a neural network could be either a fully-connected network or it could be a 

partially-connected network. Now, very quickly, let me take a very simple example. So, 

if I have got say one network having this type of structure. So, it is 2 input neuron, 3 

hidden neuron and 1 output neuron, and if the connectivity is something like this, the all 

neurons are connected. So, this type of network is known as the fully connected network. 

On the other hand, if I have got a network of this type like, if I have got a network of this 

type, say I have got these are the input neurons, and supposing the these are the hidden 

neuron and this is output neuron. 
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And, if the connectivity is something like this, so this is nothing but actually one partially 

connected network, because this connectivity is actually not ensured. Then comes, your 



this connectivity is not ensured. So, dotted lines are actually absent. So, this type of 

network is known as the partially-connected network. 

Thank you. 


