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Lecture – 21 

Some Examples of Neural Networks 
 

Some Examples of Artificial Neural Networks: Now, we have seen how to design an 

artificial neuron by copying the principle of a biological neuron. We have also discussed, 

how to form a layer of neurons and we have also seen, how to design a particular 

structure of artificial neural network.  
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Now, we are going to discuss a some of the very important and popular neural networks. 

So, we are going to concentrate on the working principle of a few networks. Now, these 

networks are as follows: We are going to discuss the principle of multi-layer-feed-

forward neural networks. Then, we are going to concentrate on radial basis function 

networks. After that, we are going to concentrate, how to include the feedback circuit 

along with the feed-forward circuit to develop the most popular, that is your recurrent 

neural networks. We will see the principle of self-organizing map or Kohonen network. 

And, at the end, we will try to see the working principle of a counter-propagation neural 

network and we will solve a few numerical examples also.  



(Refer Slide Time: 01:57) 

 

Now, here actually, let me start with the first one that is your multi-layer feed-forward 

network. And, in short, this is known as your MLFFNN, that is Multi-Layer Feed-

Forward Neural Network. Now, its name indicates that this particular network consists of 

a number of layers. And, here, we are going to consider three layers, that is the input 

layer, then comes hidden layer and we have got the output layer.  

Now, here on the input layer, we are going to consider capital M number of neurons. 

Similarly, on the hidden layer, we have got capital N number of neurons and on the 

output layer, we have got capital P number of neurons. So, this is known as in fact your 

M-N-P networks.  

Now, here if you see on the input layer, we are using the linear transfer function say it is 

something like y x=  sort of thing, and we have considered the slope of this particular 

the straight line say m that is equals to 1. So, on the input layer, we are considering the 

linear transfer function y x= . On the hidden layer, we are considering the log sigmoid 

transfer function.  

And, we have already seen the mathematical expression for the log sigmoid transfer 

function, that is nothing but 1
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. Now, here, this particular a is actually the 

coefficient, which is going to decide, what should be the slope of this particular curve. 

Now, these are already mentioned that the higher the value of a, the steeper will be the 



curve and vice-versa. So, this is your the log sigmoid transfer function and its output 

varies from your 0 to 1.  

Now, on the output layer, we consider the tan sigmoid transfer function. And, if you see 

the mathematical expression for a tan sigmoid transfer function, this is something like 

this. 
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. So, this is nothing but the tan sigmoid transfer function. And, once 

again, the coefficient a indicates the slope of the curve.  

Now, if you see the range for this particular tan sigmoid transfer function, it varies in the 

range of – 1 to + 1. So, this is regarding the different types of the transfer function used 

in the different layers of this particular network.  

Now, then comes here the connecting weights between the input layer and this particular 

your hidden layer is denoted by the V matrix. And, similarly, the connecting weights 

between the hidden layer and the output layer are denoted by so this particular the W 

matrix. And, if I see the individual values for this connecting weights, it may vary in a 

range of say 0 to 1 or in the range of say – 1 to + 1, that means, these are in the 

normalized scale.  

Now, here if you see the inputs, as I mentioned there are M inputs and actually on the 

input layer, we have got the M number of neurons. Now, let me concentrate on a 

particular neuron lying on the input layer say ith neuron. And, a particular neuron that is 

your the j-th neuron lying in the hidden layer. And, a particular neuron lying on the 

output layer, say this is nothing but the k-th neuron. So, the connecting weight between i 

and j is denoted by your v_i j. And, the connecting weight between your j and k, this is 

nothing but is your w_j k.  

Now, I am just going to discuss a little bit like how to design, in fact, your how to send 

the inputs to this particular network. Now, remember one thing so, the inputs to the 

neural networks are sent in the normalized form, because the different inputs may have 

different ranges. 
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And, if you do not normalized, there could be a possibility that this particular network 

may not work properly. So, what will have to do is, all the inputs like your so these 

inputs, we will have to pass in the normalized scale. Now, before that, if I how to make it 

normalized, so I am just going to discuss in details. Now, before that, let me just tell you 

the notations, which I am going to use here.  

Now, this I _I1 this particular notation indicates, the input of the first neuron lying on the 

input layer, then comes here I _O1 is nothing but the output of the first neuron lying on 

the input layer. Similarly, if I see so this H _Ij is nothing but the input of the jth the 

neuron lying on the hidden layer. So, H_Oj is nothing but the output of the jth neuron 

lying on the hidden layer. And, this O_Ik is nothing but you are the input of the kth 

neuron lying on the output layer. And, this O_Ok is nothing but your output of the kth 

neuron lying on the output layer. 

Now, I am going to discuss how to make this particular inputs in the normalized scale. 

Now, normalized scale means either we will have to put in the scale of say 0 to 1 or in 

the scale of say – 1 to + 1. So, let me discuss how to make it in the scale of say either 0 

to 1 or from – 1 to +m 1.   

Now, let me concentrate on this first one, that is I_I1. Now, to represent in the 

normalized scale, that is, 0 to 1 the formula, which is generally used is something like 



this, that is, 
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. Now, if input, that is, I_I1 is kept equal to your I_I1^minimum, 

I will be getting, which is nothing 0. And, if I put that I_I1 is nothing but 

I_I1^maximum, so I will be getting 1. So, this is the way actually, this particular input 

can be converted into the scale of 0 to 1.  

Similarly, if I want to represent in the scale of – 1 to + 1. So, what I will have to do is 

actually, I will have to use one expression, which is nothing but 
min
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If I put I_I1 is equal to I_I1^minimum, so I will be getting 0 here that means I will be 

able to generate – 1.  And, if I put I_I1 equals to I_I1^maximum, so here, I will be 

getting  2 -1. So, this is nothing but + 1. So, I can vary this particular input in the scale of 

– 1 to + 1.  

Now, the point, which I am going to make that this particular inputs are to be represented 

in the form of normalized scale. And, once you got this particular inputs in the 

normalized scale, and if I use the linear transfer function on the input layer, I will be 

getting the output, that is nothing but equal to the input, that means, your I_Oi will 

become equals to I_Ii. So, this is the way, actually we can find out the output of the 

neurons lying on the input layer.  

And, once you have got, this particular outputs of the first layer. Now, I can multiply 

with the corresponding connecting weight and I can sum them up, so that I can find out 

the input for the hidden layer. And, once you have got this particular input for the hidden 

layer, it will be passed through the log sigmoid transfer function. So, I will be getting the 

output like H_Oj, H_O1, and so on.  

And, once you have got this particular outputs, now we will multiply with the 

corresponding connecting weights denoted by W and these are summed up here. And, 

that will be the input of the kth neuron lying on the output layer. And once again, it will 

pass to the transfer function, that is your tan sigmoid transfer function. And, accordingly, 

I will be getting the output of the kth neuron lying on the output layer.  

So, this the way actually, we can carry out the forward calculation. And, we can find out, 

what should be the output for a set of inputs. Now, here before I go for the forward 



calculation. I am just going to mention two things. One is your, we generally use some 

bias value, so we put some bias value but, here for simplicity actually, I have assumed 

that bias is equal to 0. And, this is actually, how to make this particular analysis a little 

bit simple.  

Now, another thing I should mention that initially we generate all such connecting 

weight values like the V values and W values at random using the random number 

generator. And, then, through a large number of iterations, we try to find out what should 

be the updated values for these V and W, so that this particular network can make the 

prediction as accurately as possible.  

Now, let me repeat once again for the set of inputs, if I know all the transfer functions at 

the connecting weights, I will be able to find out this particular output and this is nothing 

but the calculated output. Now, for this training scenario that means, for this set of input 

parameters, there is one known output. And that is nothing but the target output that 

means, if I write here, O_Ok is nothing but the calculated output of the kth neuron lying 

on the output layer, I can also write down. 

So, T_Ok is nothing but the target output of the k-th neuron. Now, if I know the target 

output, very easily I can find out the error. How to find out? I am just going to discuss in 

details. And, once I have got this particular error by comparing the calculated output 

with target output, I will propagate in the backward direction. I can modify or I can 

update all the connecting weights, and I can update the coefficients of the transfer 

functions. And, through a large number of iterations, I am just going to do this particular 

updating. And, ultimately, so this particular network is going to make the prediction as 

accurately as possible.  

Now, another thing I should mention that the performance of this particular network 

depends on a number of parameters. For example, it depends on the connecting weights, 

it depends on your the coefficient of the transfer function, whether it is log sigmoid, tan 

sigmoid or whether it is the linear transfer function, it depends on the slope of the linear 

transfer function, it also depends on the topology or the architecture of this particular 

network. 

And, to represent the topology or the architecture, we see how many layers are there and 

how many neurons are present in each of these particular layers. So, the performance of 



this particular network not only depends on the architecture or the topology, it also 

depends on the connecting weights, the coefficient of transfer function, and all such 

things.  
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Now, let me see, how to carry out, actually, the forward calculation for this particular 

network. Now, before I go for that, this I have already mentioned that this V is nothing 

but the connecting weights between the input and hidden layers.  

And, this is actually a matrix, the matrix of connecting weights. And, here, this is 

nothing but one M N× . So, this is nothing but actually M N× . And, this particular W 

matrix is a connecting weight matrix between the hidden and output layers. And, this is 

nothing but is your N P×  matrix. Now, as I told that initially, this is generated at 

random, and through a large number of iterations, these particular connecting weights 

will be updated. 
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Now, let us see how to carry out the forward calculations. Now, in step-1, we try to 

determine the output of the input layer. Now, as we have considered the linear transfer 

function of the form y x= , so output equals to input. So, we can very easily write down, 

the output of the ith neuron lying on the input layer is nothing but the input of the ith 

neuron lying on the input layer. And, here, small m is varying from 1, 2 up to capital M.  

Now, once we have got the output of the input layer, now we are in a position to 

determine what should be the inputs of the hidden layer. So, we are going to discuss 

step-2 and the input of the hidden layer that is nothing but 

1 ............... .............Ij ij O ij Oi Mj OMH V I V I V I= + + + + . Now, here, j varies from 1, 2 up to N. 

And, once you have got the input of the hidden layer, now it will be passed through the 

transfer function just to find out, what should be the output of this hidden neuron.  
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Now, let us see how to find out the output. So, step-3, that is, the determination of output 

of the hidden neuron,  that is, 
1

1
1 IjOj a HH

e−=
+

. So, H_Ij is a actually nothing but the 

input of the jth neuron lying on the hidden layer. And, this particular a_1 is actually your 

the coefficient of the transfer function.  

Now, next is your the step-4, that means, we will have to find out the inputs of the output 

layer. Now, this O_Ik is nothing but the input of the kth neuron lying on the output layer, 

and that is nothing but W_1k multiplied by H_O1 plus there are a few terms here plus 

W_jk multiplied by H_Oj plus there are a few terms here, and the last term is your 

W_Nk multiplied by H_ON, and k varies from 1, 2 up to capital P, and this P is nothing 

but the total number of neurons lying on the output layer.  
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Now, this is the way actually, you can find out the inputs of the output layer. And, once 

you have got the input of the output layer, now in step-5, we allow this particular input to 

pass through the transfer function, and you will be getting actually 
2 2

2 2

Ik Ik
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−
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And, this a_2 is nothing but the coefficient of the transfer function. So, this O_Ok is 

nothing but the calculated output of the kth neuron lying on the output layer.  

And, once you have got it, now we can compare with the target value, that is the output 

of the kth neuron that means your the target output that is denoted by T_Ok. Now, if I 

have got the target output is nothing but T_Ok and the calculated output is nothing but 

O_Ok, now this particular thing it could be either positive or negative.  

And, that is why, to make it positive, what you do is, either we consider the mod value of 

this or what you considered is your like T_Ok minus O_Ok. So, square of that just to 

make it positive. And, here you can see, I have added here one term that is your half, so 

this is multiplied by half. The reason is actually very simple. 

Now, in future, I will have to differentiate. So, this particular error of the kth output 

neuron with respect to the calculated one. And, if I put square here and if I differentiate,  

I will be getting one, 2. So, this 2 will be multiplied by 1/2 just to make it 1. For this 



particular purpose actually, we use this particular term, that is, 1/2. So, we are able to 

find out what should of the 21 ( )
2k Ok OkE T O= − .  
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Now, once you have got this particular output of the kth neuron lying on the output layer. 

Now, in the output layer, in fact, we have got a large number of neurons or say P number 

of neuron. So, I can find out what should be the total error of all the neurons lying on the 

output layer and that is nothing but 2

1

1 ( )
2

P

Ok Ok
k

E T O
=

= −∑ . So, this is nothing but the 

total output of the output layer considering P neurons.  

Now, if I have got this particular total error that corresponds to, in fact, only one training 

scenario, that means, only one set of inputs and outputs. And, supposing that we have got 

say capital L number of training scenarios, so what we will have to do is, we will have to 

pass all the training scenarios one after another and we can find out the total error after 

passing all capital L training scenario and that is denoted by E_total. So, 

2

1 1

1 ( )
2

L P

total Okl Okl
l k

E T O
= =

= −∑ ∑ , where capital L indicates the number of training 

scenario.  

Now, here, this particular term O_Okl represents the output of the k-th neuron lying on 

the output neuron layer corresponding to l-th training scenario. Similarly, say this 



particular T_Okl indicates the target output of the k-th neuron lying on the output layer. 

And this particular output is the target output corresponding to the  l-th training scenario.  

So, this is the way actually, you can find out what should be the expression of the total 

error for this output layer neurons after considering all the training scenarios. And, once 

you got this particular picture, now, we are in a position like how to propagate it back, so 

that we can modify actually your the connecting weights and the coefficient of transfer 

function such that this particular network can make the prediction as accurately as 

possible.  
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Now, here actually, I am just going to discuss now how to minimize this particular error 

in prediction. Now, to minimize the error in prediction, what we will have to do is, we 

will have to take the help of one optimizer or one optimization algorithm. Now, here, I 

have already discussed that the performance of this particular network depends on a 

number of parameters. So, if I consider this error, error in prediction of the network, so 

that is a function of so many variables. 

For example, say it depends on the connecting weights V, it depends on the connecting 

weights W, it depends on the coefficient of transfer function say a_1, it depends on the 

coefficient of transfer function a_2 for the output layer, it also depends on the slope of 

the linear transfer function, say m and there are a few other parameters. So, it depends 

on, in fact, a large number of parameters, ok. 



Now, what you do is, for simplicity for the purpose of explaining how can it be 

minimized, how can this particular error be minimized. So, what we assume that this 

particular error is a function of only two variables, that is V, another is your W and for 

the time being you just forget the other terms. And, if I express that is error in prediction 

is a function of two variables V and W, so very easily, we can prepare the plot, that plot 

is nothing but the error plot. And, we will be getting this particular error surface.  

Now, if I plot this particular error along the z direction and say, the connecting weight v 

along x direction and the connecting weight w along y direction, I will be getting this 

particular error surface in 3 D. Now, we know that we, human beings, can visualize only 

up to three dimension and that is why, we have considered that this particular error is a 

function of only two variables, so that we can plot this particular error surface in 3 D.  

Now, if I consider more, so it will become four or more than four dimensions, which we 

cannot visualize. So, let us assume that this error is a function of only two variables, so 

on the 3 D plot, I can see, what should be this particular error surface. Now, as I told that 

we start with the random values for these particular the V and W and supposing that 

initially, the error of the network is here say.  

And, what is our aim, our aim is to reach the minimum value of error, which is here. So, 

what you do is, we start from here, then through a large number of iterations, actually we 

try to move towards the minimum error solution and gradually, during the training, the 

network is going to reach this particular state, so that if we send a set of inputs, it will be 

able to predict the output as accurately as possible.  

Now, as I told that we are going to take the help of some optimization tool for example, 

say we are going to use a very popular optimization tool, the traditional tool for 

optimization, that is known as the steepest descent method. So, the steepest descent 

method actually, we are going to use. Now, this steepest descent method is one of the 

most popular traditional tools for optimization. And, here, the search direction is 

opposite to the gradient.  

So, we try to find out the gradient direction of the objective function and try to move in a 

direction opposite to the gradient. The same principle actually has been copied here in 

the back-propagation algorithm. Now, here, actually what you do is, we try to find out 

the change in V, that is the connecting weight between the input and the hidden layer, 



that is nothing but minus eta multiplied by the partial derivative of error E with respect to 

the V. EV
V

η ∂
∆ = −

∂
. Now, this particular actually the η  is known as the learning rate. 

Now, this learning rate actually it varies in the range of, say 0 to 1.  

Now, if I compare this particular expression with the expression of this particular, the 

steepest descent method, so the search direction is decided by E
V
∂

−
∂

, that means, I have 

moving in a direction opposite to the gradient. And, here so this η , that is the learning 

rate is going to represent actually the step length of this particular steepest descent 

algorithm. Now, let me mention that for any optimization tool, there are two things 

which will have to consider, one is your what should be the search direction, and what 

should be the step length.  

Now, the same thing, we have just copied here to find out the change in V is nothing but 

eta (the step length) and minus partial derivative of  E with respect to V, so that is going 

to decide, what should be the search direction. Now, similarly, actually the change in W 

is nothing but E
W

η ∂
−

∂
. Similarly, if I just want to say find out the updated value for this 

the coefficient your a_1, a_2. 

So, what will have to do is, so we will have to find out what is 1
1

Ea
a

η ∂
∆ = −

∂
. And, 

similarly, I can also find out the small change in a_2 also. So, this is the way actually we 

can implement this delta rule just to find out what should be the updated values for the 

connecting weights and the coefficients.  



(Refer Slide Time: 32:33) 

 

Now, I will be discussing all such things in details mathematically we will see how to 

determine these updated values with the help of some mode of training and these things 

will be discussed, in details. 

Thank you. 


