
Fuzzy Logic and Neural Networks
Prof. Dilip Kumar Pratihar

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 18

Optimization of Fuzzy Reasoning and Clustering Tool (Contd.)

(Refer Slide Time: 00:15)

Now, we are going to discuss, how to carry out optimization to achieve one optimized

fuzzy reasoning tool. Now, we have seen that the performance of a fuzzy reasoning tool

or a fuzzy logic controller depends on its knowledge base, which is nothing, but a

collection of its database and rule base. Now, let us see the scheme, how can you

optimize or how can you tune this particular knowledge base of the fuzzy logic controller

or fuzzy reasoning tool, so that we can model the input-output relationships of a process

as accurately as possible.

Now, here what we do is, this knowledge base of the fuzzy logic controller, that is the

database and the rule base, we try to optimize with the help of a nature-inspired

optimization tool. Now, during this training or the tuning, what we will have to do is, we

will have to take the help of some known input-output relationships and that is known as

the training scenarios. Now, this nature-inspired optimization tool is an iterative method

and it takes a huge amount of time just to converge to the optimal solution. And, that is

why, this particular training or the tuning of the parameters is carried out offline. Now,

once you have got the optimized knowledge base of the fuzzy logic controller, now we

can pass the set of inputs through the fuzzy logic controller.

So, we will be getting this particular output, online, might be within a fraction of second

for a set of inputs. So, we will be getting that particular the output and that is why, once

it is trained offline and now, we are in a position to use it online. Now, let us see how

does it work.

(Refer Slide Time: 02:35)

Now, to explain this, we are going to take the help of one numerical example, now there

are several approaches of optimizing. So, this particular fuzzy reasoning tool or fuzzy

logic controller, the first approach is known as the GA-based tuning of manually

constructed FLC.

So, what we do is, supposing that I want to determine the input-output relationships of a

particular process. Now, what we do is, we try to design the knowledge base which is

nothing, but a collection of database and rule base manually. So, based on the

information we have we try to design manually first, but that may not be the optimal in

any sense. And, after that, we are going to take the help of an optimizer, it is a genetic

algorithm, so that we can find out the optimal knowledge base for this particular fuzzy

logic controller.

Now, as I told that we are going to take the help of one binary-coded genetic algorithm

here. So, a binary-coded genetic algorithm is used to obtain optimal database and rule

base of a fuzzy reasoning tool and let me consider a process having say 2 inputs and 1

output, the two inputs are I_1 and I_2 and we have got one output, that is denoted by O.

The membership function distribution of the inputs: I_1 and I_2 and the output O are

assumed to be triangular in nature, for simplicity.

So, this shows the membership function distribution for the first input, that is I_1 and this

shows the membership function distribution for the second input, that is I_2 and this

shows the membership function distribution for the output, that is O. Now, both the

inputs and the output actually are represented with the help of four linguistic terms each,

for example, say the linguistic terms are low, medium, high and very high. Now, there

are four linguistic terms for I_1 and four linguistic terms for I_2.

So, I will have 4 multiplied by 4, there are 16 possible combinations for the inputs and

we are going to consider the 16 rules and each rule is nothing, but the relationship

between the inputs and the output. Now, as I told that for simplicity, we have considered

that membership function distribution is triangular. So, for this medium and high, we

have considered isosceles triangle and there is overlapping region also. And, for this low

and medium in fact, we are going to consider some sort of say right angled triangle and

similarly, for this I_2 and O.

So, we are having the membership function distribution for your the low, medium, high

and very high. And, here, once again low, medium high and very high and once you have

got the membership function distribution, as I told, now, we are in a position to design

the rule base.

(Refer Slide Time: 06:23)

Now, here, we have got the 16 rules. Now, the 16 rules can be read as follows: For

example, the first rule could be so if I_1 is say low. So, I_1 is low and I_2 is your low.

So, I 2 is low then your output O is also low. So, this is actually the first rule, similarly

we can design all the 16 rules, now all these are manually constructed 16 rules.

Now, the designer will design this particular rule base based on his or her experience of

that particular problem. Now, as I told that a particular rule is nothing, but the

relationship between the inputs and output. And, let me read once again the first rule and

which is as follows: if I_1 is low and I_2 is low then output O is low and similarly we

have got say 16 such rules.

(Refer Slide Time: 07:51)

Now, I am still continuing with the statement of this particular numerical example. So,

here once again let me tell that a binary-coded GA, we will be using to optimize both the

database as well as the rule base of this fuzzy reasoning tool. And, here, we have got the

set of training cases and a particular trading scenario is nothing, but the relationship

between the inputs and output.

For example, say the first training scenario is nothing, but if I_1 is 10 with some units

and I_2 is 28 with some other units, then the output is nothing, but 3.5 with some other in

unit. So, this is the way actually, we can design and we can collect in fact, the known

input output relationship and that is nothing, but the set of training cases or the set of

training scenario. Now, here we have got say capital T number of training scenarios.

(Refer Slide Time: 09:05)

Now, once you got this particular training scenario, now, actually we will have to design

that particular GA-string, the GA string for the binary-coded GA. Now, this particular

GA-string will carry information of all the design variables, now, what are the design

variables, let me have a look fast, then I will concentrate here.

(Refer Slide Time: 09:29)

Now, one of the design variables could be your this particular b_1. So, b_1 is going to

represent, whether this particular triangle will be is a stiffer one or it will be a flatter one.

For example, say if it is a right-angled triangle, this indicates the base width of this right

angled triangle and if it is isosceles triangle. So, this b_1 indicates actually the half base

width of this particular isosceles triangle.

Similarly, for this particular I_2, b_2 is actually the variable. So, b_2 could be large or it

could be small, similarly for this particular output. So, b_3 could be your the design

variables. Now, we will have to assign some bits to represent; so, this b_1, b_2 and b_3,

let me assume that I am assigning. So, 5 bits to represent each of the variables like your

b_1, b_2 and b_3.

(Refer Slide Time: 10:41)

Now, once you have assigned. So, some bits like 5 bits each to b_1, b_2 and b_3. So,

now, we have got, in fact, your for 3 variables, 5 plus 5 plus 5; so 15 bits to represent

b_1, b_2 and b_3. Now, I have to represent the rule base, how to represent the rule base?

I have got 16 rules, now to represent, in fact, the presence or absence of a rule, we use

either 1 or 0; now if it is 1, it means that that particular rule is present and if it is 0, the

rule is absent.

Now, what you do is, this indicates actually the rule base. So, we concentrate on the left

most top corner. So, we start with this, then we just move in this particular direction,

next we move in this particular direction, next we move, in fact, in this particular

direction, next we move this particular direction to represent that particular the rule and

what you do is. So, if there is 1 here means that particular rule is present, if there is a 0

here means that particular output is absent, that means your that particular output is

absent, and so on.

So, there are 16 such rules. So, I need, in fact, 16 bits just to represent, whether the rule

is present or not. So, the GA-string will consist of 15 for this b_1, b_2 and b_3 (this is

for b_1, b_2 and b_3) plus 16 for the rule base. So, GA-string will be your 31 bits long.

So, the same thing actually, I am just going to represent here.

(Refer Slide Time: 12:43)

Now, if you see the GA-string, this particular population, which are generated at random,

the first 5 bits are going to represent the b_1, the next 5 bits are going to represent in fact,

your b_2, the next 5 bits are going to represent b_3 and the remaining 16 bits are going

to represent the rule base.

So, the rule base is represented by these 16 bits, this is going to represent b_1, this is

going to represent b_2 and this is going to represent b_3, and the GA-string will be your

31 bits long. And, similarly, we have got the whole population of solutions generated at

random. Now, once you have got this, now let us see, how can it optimize, how can GA

optimize that particular database and the rule base.

(Refer Slide Time: 13:49)

Now, before we proceed further, let me finish the statement of the problem. Now in fact,

our aim is to determine the deviation in prediction for the set of training scenarios; that

means, once it is trained, we are going to pass a set of inputs at the test scenario.

And, we will try to find out, what should be the output and how much is the deviation

during the optimization, so these are the ranges for your b_1, b_2 and b_3. Now, these

are all real variables and we will have to define the ranges for your b_1, b_2 and b_3. So,

this completes actually the statement of the problem. Now, let us see, how to find out the

solution for this particular problem.

(Refer Slide Time: 14:49)

Now, this particular method, I have already discussed a little bit. So, let me discuss once

again, let me concentrate on the first GA-string, which is 31 bits long. So, this particular

GA-string is 31 bits long. So, first five bits are going to represent b_1, the b_2 is going

to be represented by the next 5 bits, the next 5 bits are going to represent b_3 and the 16

bits are going to represent that particular the rule base. Now, we have already discussed

like how to find out the decoded value, now if I try to find out for 1 0 1 1 0.

So, this displays the values: 2 raise to the power 0, 2 raise to the power 1, 2 raise to the

power 2, 2 raise to the power 3, 2 raise to the power 4. So, the decoded value will be

your 2 raise to the power 4 is nothing, but 16, then 2 raise to the power 2 is nothing, but

4 plus 2 raise to the power 1 is nothing, but 2. So, this is nothing, but 22. So, this is

nothing, but is your the decoded value.

And, once you have got the decoded value and once again, we will have to use that linear

mapping rule, which has already been discussed and using that linear mapping rule, I can

find out what should be the real value for this particular b_1, that is the first design

variable. Now by following the similar procedure, I can also find out, what is b_2, then

what is b_3 and once we got the real values for this b_1, b_2 and b_3.

(Refer Slide Time: 16:41)

So, now in fact, we are in a position to find out like what should be the modified

membership function distribution. So, the modified membership function distribution

will look like this. So, the starting value for I_1 we keep it fixed, similarly the starting

value for I_2 is kept fixed, starting value of output is kept fixed.

Now, we are going to find out, what should be the modified value for this particular your

b_1 and depending on the values of this b_1, b_2 and b_3. So, this is your b_2 and this is

nothing, but is your b_3. So, we redraw the modified membership function distribution.

So, the modified membership function distribution for I_1, I_2 and O will look like this,

and once you have got the modified membership function distribution.

(Refer Slide Time: 17:43)

Now, we are going to discuss like how to select the good rules with the help of the GA

string, supposing that these 16 bits lying on the first GA-string are going to represent the

presence and the absence of the rules. Now, this I have already discussed that these

represent actually the output of the rules. So, I_1 has got 4 linguistic terms, I_2 has got 4

linguistic terms.

So, this represents actually the first rule. Now if I just write on this particular GA-string

here. So, this is 1. So, this particular 1, then there is three 0’s 0 0 0 so I am here, next is 1

0 so I am here, next is 1 0 so I am here, next is 1 0 so I am here, next is 1 1 1 so I am

here, then 0 0 1. Now, one means your so this particular rule is present, 0 means this rule

is absent and so on. So, this is the way actually, we can code in fact, the rule base inside

the GA-string.

(Refer Slide Time: 19:09)

Now, once we have got this particular thing, now, actually what we can do is, I can pass

a particular training scenario. Now the training scenario is something like this the first

training scenario. So, if I_1 is 10, I_2 is 28. So, actually we will have to find out what

should be the output of this fuzzy reasoning tool. Now, for I_1 equals to 10 and I_2

equals to 28. So, if you see the modified membership function distribution, if we see the

modified membership function distribution, it is like this.

(Refer Slide Time: 19:53)

So, I_1 is 10 means I am here, so if I_1 is 10 so I am here, so that means, I am here. So,

this I_1 could be either medium with some µ value or it could be a high with another µ

value; now similarly this I_2 is 28; that means, I am here. So, for this 28, it could be low,

with this much of membership function value and it could be medium with this much of

membership function value.

So, this particular I_1 could be medium or high and your this I_2 could be either this

particular your low or medium. So, I have got 2 multiplied by 2, a maximum of 4 fired

rules. Now, out of this maximum possibilities, we will have to check, which of the rules

are present. So, to check it, in fact, so what we will have do is, we will have to come here

and we will have to find out. So, out of these 4 fired rules, which 1 or which 2 or which 3

or which 4 rules are present here, that we will have to find out.

Now, for this particular problem, if you see. So out of this in fact, only there are 2 fired

rules the fired rules are as follows. If I_1 is medium AND I_2 is low then output is low,

the 2nd fired rule if I_1 is high AND I_2 is low then output is actually the medium. Now,

let us see, now corresponding these, if I_1 is your medium, this is the membership

function distribution for medium. So, corresponding to this so I am passing I 1 equals to

10. So, I should be able to find out, what should be the membership function value and

this is nothing, but the membership function value.

Now this I have already discussed that by using the principle of the similar triangle, very

easily you can find out what should be the membership function distribution

corresponding to this medium and if you calculate, you will be getting mu_m is nothing,

but 0.83.

(Refer Slide Time: 22:17)

Now, if you follow the same principle, just to find out what should be the µ value

corresponding to I_2 equals to your that 28. So, corresponding to 28, I can also find out

what is your lowµ following the principle of the similar triangle and I can calculate the

mu low is nothing, but 0.13.

(Refer Slide Time: 22:49)

Now, if you see, you can find out the µ values. Now, if I concentrate on your the 1st

fired rule, that is nothing, but if I_1 is medium AND I_2 is low then output is low, this is

a membership function distribution for the low. Now, corresponding to this medium, we

have already determine mµ , corresponding to low we have determined lowµ . And, we

will have to find out the minimum value, as we have already discussed and

corresponding to the low value of µ , this will be the output, the fuzzified output.

(Refer Slide Time: 23:33)

Now, following the similar procedure, I can also find out, what should be the output for

the 2nd fired rule, but before that let me concentrate a little bit more on how to determine

the area and center of area, corresponding to this fuzzified output, which we have got

corresponding to the 1st fired rule. Now, I will have to find out the area and center of

area of this particular the shaded portion. Now, to determine the area and center of area,

so what we do is.

So, this is divided into two parts, I have got one rectangle sort of thing and I have got one

triangle sort of thing, ok. Now, what you can do is, I can find out the area for this

rectangle, that is A_1 and area for this triangle, that is A_2 and I can also find out the

center of area. Now, this I have already discussed in much more details. So, I am just

going to skip the detailed discussion on this and because I have already discussed. So,

this area A_1 can be determined like this, the center of the area the C_1 can be

determined like this. Similarly, the area for the triangle that is A_2 can be determined

like this and the center of area can be calculated like this.

(Refer Slide Time: 25:07)

And, once you have got this area and center of area. So, now, I am in a position to find

out corresponding to the 1st fired rule. So, what should be your the center of combined

area. So, I can find out corresponding the 1st fired rule like what should be your the area

and what should be your the center of area. Now, this area and center of area I can find

out. So, this area is nothing, but this and center of area is nothing, but this, corresponding

to the 1st fired rule.

(Refer Slide Time: 25:41)

And, once you have got this, now we can concentrate on the 2nd fired rule. The 2nd fired

rule states, if I_1 is high and I_2 is low then output is medium, and I can find out what is

Hµ , I can also find out what is lowµ I can compare, so this is the minimum.

So, corresponding to this in fact, I can find out. So, this will be the area, the shaded area

and now, I will have to find out the area and center of area of this particular shaded

portion.

(Refer Slide Time: 26:23)

Now, this area I can find out, now this is the area of the shaded portion and center of area

I can find out. So, if I know the area and center of area for this particular fuzzified output

of the 2nd rule and by knowing the same for the first rule; now we are in a position so

that we can find out using the center of sums method, what should be the crisp output.

Now, if you follow the principle of center of sums method very easily you can find out

that this will be the crisp output and once you have got the crisp output and that is

nothing, but is your the calculated output. Now, if I know the calculated output.

(Refer Slide Time: 27:09)

So, this is the calculated output, we compare with the target output, find out the deviation

and the deviation could be either positive or negative, take the mod value and this is

actually the deviation. Now, this particular deviation is corresponding to the first training

scenario. So, this is the first training scenario, now we will have to follow the same

procedure for all the training scenarios and we will be able to find out d_2, d_3 up to

d_T.

(Refer Slide Time: 27:51)

And, after that actually, what we do is, we try to find out the total deviation and that is

divided by the number of training scenarios and that is nothing, but the average

deviation. Now this particular average deviation is nothing, but the fitness of this

particular the first GA-string.

So, this is the GA-string for which we have got the fitness and this is f_1, but is your d

bar that is the mean deviation. Now, similarly you can find out the fitness for the second

GA-string the fitness for the n-th GA-string and this is a minimization problem. Now, if

use the binary-coded GA and if you want to convert, we can convert the objective

function to minimize this particular fitness. So, what we will have to do is, I will have to

maximize say 1 divided by the fitness. So, I can maximize 1 divided by fitness just to

minimize your the fitness, that is, f.

Now, you are going to use the operators like reproduction, crossover and mutation. Now,

GA through a large number of iterations will try to find out the optimal knowledge base

of the fuzzy logic controller; that means, your optimal database and rule base for the

fuzzy logic controller so that this particular fuzzy logic controller can predict the output

for a set of inputs as accurately as possible.

Thank you.

