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We are discussing fuzzy clustering algorithms. Now, we have already explained the 

working principle of fuzzy C-means clustering with a suitable numerical example. Now, 

we are going to start with another very popular algorithm, which is known as entropy 

based fuzzy clustering algorithm. Now, here, we are going to use a term, that is called 

the entropy and which is nothing, but an index. Now, this particular index is used just to 

identify which one should be the cluster centre. 

Now, supposing that we have got a large number of data points in multidimensional form 

and our aim is to identify, which should be the cluster centre. Now, what you do is, we 

use the concept of this particular entropy, and this entropy value, if you want to 

calculate, we will have to take the help of one value that is called the similarity value. 

And, similarity is based on the numerical value of Euclidean distance, now supposing 

that I have got two points say point i and another point say point j. So, very easily, I can 

find out, what is the Euclidean distance and that is denoted by d_ij. And, if I know the 



Euclidean distance, I can find out the similarity between these two points, that is denoted 

by S_ij. 

Now, if the distance between the two points is more, the similarity will be less and vice-

versa. And, as I told, once I got this particular Euclidean distance, we are in a position to 

calculate the similarity. And, if I know the similarity information, we can find out this 

particular entropy, and I have already mentioned that this particular entropy is an index, 

which helps us to decide, which one should be the cluster centre. 

Now, the point which is having the minimum entropy value is selected as the cluster 

centre. Now, once I have got this particular cluster center, supposing that I have got this 

is the cluster center. Now, surrounding this particular cluster center, we have got a 

number of data points, now we will have to take one decision. So, out of all the data 

points, which are going to enter that particular cluster. 

Now, what I do is, we try to take the help of similarity, once again and there will be 

some threshold value of similarity. Now, the data points surrounding this particular 

cluster centre, which are found to have similarity greater than equals to some pre-

specified value will be encouraged to enter this particular cluster. Now, this is the way 

actually, we do the clustering and this particular thing, we are going to discuss in much 

more details.  
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Now, here, I am just going to take one typical example, supposing that we have got a 

large number of data points. So, capital N number of data points and supposing that this 

particular capital N is equal to say 1000. So, we have got 1000 data points and these data 

points are in higher dimension say L dimensional space; that means, if I want to 

represent a particular point, I need to have capital L number of numerical values. 

Now, what we do is, by using this entropy-based fuzzy clustering, as I discuss, the first 

thing we do is, we try to identify, which one should be the cluster centre. Now, 

supposing that we have calculated entropy for each of the data points, and now how to 

calculate I will be discussing in much more details. But, supposing that we have got the 

entropy values, the data point which is having the minimum value of entropy will be 

declared as a cluster centre. Now, supposing that let me assume that, this particular data 

point is having the minimum entropy value. So, this is nothing, but the cluster center.  

Now, the moment, we declare that this is the cluster center, and now surrounding this, we 

will have to find out actually a few members which will also belong to this particular 

cluster. Now, what we do is? So, we try to compare the similarity of the data points with 

this cluster centre. So, how to find out the similarity? So, what we do is, we calculate the 

Euclidean distance and using the Euclidean distance information, we try to find out the 

similarity. 

Now, if this particular similarity with respect to the centre of the cluster is found to be 

greater than or equal to some threshold value denoted by β , then we allow those points 

to lie within this particular the cluster. So, this is the way, actually we do the clustering 

using the entropy-based fuzzy clustering. Now, I am just going to discuss in much more 

details. 
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Now, let us consider that we have got capital N number of data points and these data 

points are in L dimensional hyperspace and our aim is to actually carry out this particular 

clustering; that means will have to divide these data points into a few clusters and these 

clusters will be fuzzy clusters. Now, we take the help of a few steps now, step 1: we 

arrange the data point in N rows and L columns. So, N rows means I have got capital N 

number of data points and each data point is having L dimensions; that means, L 

numerical values. 

 And, we take the help of one matrix and its dimensions are actually N L× . So, there are 

N rows and L columns. Now, step 2: we calculate the Euclidean distance between the 

two data points i and j, say using these particular well-known formula. So, 

2

1
( )

L

ij ik jk
k

d x x
=

= −∑ , it is very simple. 

Now, here k varies from 1 to L, L is nothing, but the total number of dimensions. Now, 

here, we consider k equals to 1 to L and I have got two points, one is your i and another 

is your j, now dimension-wise we try to find out the difference square of them and after 

that we add them up and we take the squared root of that. So, this is the way we calculate 

the Euclidean distance between the two points i and j, now once, I have got the 

Euclidean distance between the two data points. 
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Now, actually, we will have to find out what is the similarity among them. Now, as I told 

that if the Euclidean distance between the two data points is more, their similarity is less 

and vice-versa. Now, let us see how to represent this particular relationship in the 

mathematical form. Now, in step 3; we try to find out the similarity S_ij between the two 

data points, that is your i and j. Now, the way the similarity and this particular distance 

relationship has been written is as follows, like ijd
ijS e α−= . 

Now, if d_ij is more then this becomes 1 divided by e raise to the power alpha dij. So, if 

d_ij is more so, this particular expression is going to be reduced; that means, your 

similarity is less. So, if the two data points are too far. So, that similarity will be less and  

vice-versa. Now, here, I just want to mention that this particular relationship is actually 

not the unique.  

Now, I can write down this particular relationship between the Euclidean distance and 

similarity in a slightly different way also, but this is actually the method, the proposer 

used, so I am just going to use the same expression, that is, ijd
ijS e α−= , where α  is a 

constant and the value for this particular constant is to be determined. Now, how to 

determine the value of this particular α , that I am going to discuss. 
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Now, here actually to determine the value of α , we assume a similarity of 0.5, when the 

distance between the two data points that is d_ij becomes equal to the mean distance of 

all pairs of the data points. Now, let me take a very simple example, supposing that I 

have got only 5 points here. So, if I have got only 5 points, what could be the 

possibilities of the distance values, the distance could be your d_11 then comes d_12, 

d_13, d_14, d_15. 

Then, the distance between 2 and 1, 2 and 2, then comes 2 and 3, then d_24 then comes 

your d_25 then comes d_31, d_32. So, d_33, d_34 then comes d_35 then d_41, d_42, 

d_43, d_44 then comes d_45 then d_51. So, d_52 then comes d_53 then comes d_54 and 

then comes your d_55.  

Now, here so, d_12 means, what is the distance between 1 and 2 and d_21 is the distance 

between 2 and 1. So, we assume that your d_21 is equal to your d_12, similarly d_41 is 

equal to your d_14 and so on. Now if you concentrate on the diagonal elements that is 

d_11, d_22, d_33, d_44 and d_55 so, these diagonal elements if we concentrate. So, the 

distance between 1 and 1 or 2 and 2 so, these are all equal to 0.  

So, distance between 1 1, 2 2 and so on and that is equals to 0. And, moreover we have 

already consider the d_21 is nothing, but d_12; that means, your if I just concentrate on 

only one side of this principle diagonal, I will be able to find out the distance values for 

example, if I just concentrate on these the distance values; that means, your d_12, d_13, 



d_14, d_15, d_23, d_24, d_25, d_34, d_35 and d_45. So, I will be able to find out the 

distance values. 

Now, here, we consider 1 2 3 4 5 6 7 8 9 10. So, we consider the 10 distance values. 

Now, here, if I just know these particular 10 distance values, my purpose is served and I 

did not calculate all 5 multiplied by 5, 25 distance values. Now, these particular 10 is 

actually nothing, but is your 5
2C  and 5

2C  if we calculate, this is 5 factorial then comes 

your 3 factorial, 2 factorial. So, this is nothing, but 5 multiplied by 4 that is 20 divided by 

your 2 and this is nothing, but 10. 

So, if I know these 10 information, my purpose will be served. And, what we do is,  we 

determine your the d , that is the mean distance. So, we consider 1 divided by 2
NC . So, 

this 2
NC  is nothing, but 10, because here N is equal to 5, according to this particular 

example. And, then, we try to find out summation i equals to 1 to N, summation j is 

greater than i to N, d_ij; that means, we consider only one side of this particular the 

triangle and this is the way, actually we can find out, what should be the average distance 

value, that is nothing, but is your d . 

Now, let me come back. So, we assume a similarity of 0.5, when the distance between 

the two points that is d_ij becomes equals to d . So, d_ij equals to d  and this is nothing, 

but this particular expression. Now, here actually, if I just derive, I can find out what 

should be the suitable expression. 
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For this particular α , now let me try to derive here the similarity. So, if I just see the 

expression for the similarity that was nothing, but S_ij. So, e raise to the power minus 

alpha d_ij. 

So, this is the relationship between the similarity and the Euclidean distance and our aim 

is to derive this particular the expression for α . Now, what we do , we consider a 

similarity of 0.5. So, 0.5 is nothing, but say 1 divided by 2 and that is nothing, but is your 

e raise to the power minus α  and these d_ij is nothing, but the mean distance, that is, d . 

Now, if I take log like the log base e on the both sides. So, I will be getting 1ln ln
2

de α−=  

now this can be return as your dα− . So, lnd eα−  and this can be written as ln 1 minus 

ln 2 and that is nothing, but - α . So, d  now ln e, that is, log e base e that is equals to 1 

and here, log 1 is equals to 0. So, I can find out ln 2 dα− = −  and from here, I can find 

out that ln 2 / dα =  and this is the expression which I have written. 

So, I can find out the numerical value for this particular α  and once I have got the 

numerical value for this particle α , very easily, I can find out the relationship between 

your similarity and the Euclidean distance values using this particular expression. So, 

this is the way actually we will have to calculate the similarity. Now, once I have got this 

particular similarity. 
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Now, here, we will have to find out what should be the entropy. Now, to determine the 

entropy, that is the index, what I do is, we use this particular expression in step 4 and 

remember one thing, this particular expression has been actually designed based on one 

philosophy. Now, I am just going to discuss the philosophy first and which is the reason 

behind defining this relationship between entropy and similarity. So, this indicates 

actually the relationship between this entropy and the similarity S. Now let me try to 

concentrate here, let us see, if I take some suitable value for the similarity, then what 

happens to the entropy. 

Now, let me assume that S is equal to 0, now if I take the S is equal to 0; that means, 

your similarity equals to 0; that means, the distance between the two point is actually 

very high and the two points are too far and let us see what happens to entropy. So, by 

using this particular the expression, now if S is equal to 0, what will happen to the 

entropy? So, E is nothing, but minus so, I am just going to put S is equals to 0 and here if 

I put S is equal to 0, log 0 is not defined. So, it is undefined, but it is multiplied by 0 so, 

its contribution will be actually 0. 

Then, comes your minus 1 minus S so, S equals to 0. So, I will be getting 1 here, then log 

base 2 S equals to 0. So, log base 2, 1 and log base 2, 1 is once again equal to 0. So, I 

will be getting 0. So, this is nothing, but 0. So, if I put S equals to 0. So, I am getting 

entropy is equal to 0, now let me put another extreme value for this similarity, let me put 



S is equal to 1; that means, your the similarity between the two data points is equal to 1; 

that means, the two data points are exactly similar and the distance between them is 

equals to 0. 

Now, if I put S equals to 1 in this particular expression, I will be getting that entropy is 

nothing, but so, 21log 1− . So, that is equals to 0 then comes your S equals to 1 so, this 

will becomes 0. So, once again, I will be getting 0. So, far S equals to 1; that means, 

when the similarity between the two data point is equals to 1; that means, your the 

Euclidean distance is equal to 0, then also the entropy becomes equal to 0. 

So, for the two extreme conditions, when the similarity equals to 0 and similarity equals 

to 1, the entropy becomes equal to 0. Now, let us try to find out, when S is put equal to 

say 0.5 or half let us see what happens, because S is in between now. So, we calculate 

actually the entropy. So, this is nothing, but 1/ 2−  then comes your 2
1log
2

. So, S is 

equal to half so, this will becomes half then comes your log base 2. So, this is nothing, 

but half. So, this can be written as your 2
1log
2

− . So, this is nothing, but is your minus. 

So, 2 2log 1 log 2− . 

Now, log 2 base 2 is actually your 1 and your 2log 1 0= . So, I will be getting minus 1 

here and I have got here minus. So, this minus and minus so, this will become equal to 

plus 1. So, entropy becomes equal to 1. So, when similarity is 0.5. So, entropy becomes 

equal to your 1.0. So, based on this particular philosophy so, this relationship has been 

derived and once I have got this particular thing, now, you are in a position to find out 

the total entropy for each of the data points. 



(Refer Slide Time: 22:05) 

 

Now, you have got capital N number of data points, for each of the data points, I will be 

able to find out what is E_i, where i varies from say 1, 2 up to your N. So, for all the data 

points, I will be getting the entropy values, that are the index values and to calculate the 

total entropy actually, this is the expression which I will have to use. 

So, 2 2( log (1 ) log (1 ))
j i

i ij ij ij ij
j x

E S S S S
≠

∈

= − + − −∑ . So, this is the way actually, we can find 

out what should be the total entropy for each of the data points and once I have got this 

information of the total entropy for each of the data points. 
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Now, I am in a position to give the statement of the different steps of this algorithm. So, 

we are going to discuss the steps to be followed in this clustering algorithm. Now, step 1; 

we calculate entropy E_i for each of the data point x_i lying in T hyperspace. So, as I 

told, we have got capital N number of data points in L dimensions So, all such data 

points, I am just going to represent by T hyperspace data points, ok. 

Now, what you do is? So, we try to calculate the entropy the total entropy for each of the 

data points using the method which we have already discussed. And, once I have got the 

whole information of this entropy for all the data points, now you are in a position to 

identify a particular data point, which is having the minimum value of entropy. So, step 

2; we identify x_i that is got the minimum entropy value and that is declared as your the 

cluster centre. So, we declare that particular point as the cluster centre, which is having 

the minimum value of entropy. 
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And, once I have got that particular cluster centre in step 3, actually what I do is, we put 

xi minimum and the data points having similarity with x_i minimum greater than your β  

and β  is nothing, but the threshold value of similarity. 

So, the user is going to define. what should be the threshold value of similarity for 

example, say this could be 0.6, it could be 0.4, it could be 0.8, and so on and what you do 

is, we have got this particular cluster centre and surrounding this, we are going to define 

one cluster. So, what you do is, the data points which are having similarity with this 

cluster centre greater than or equals to the threshold value, are allowed to enter to this 

particular cluster. 

So, finally, I will be getting this particular cluster. So, let me repeat in step 3; we put x_i 

minimum and the data points having similarity with x_i minimum greater than β  in a 

cluster and we remove them from your the T hyperspace supposing that initially I had 

1000 data points and in the first cluster supposing that, 300 data points are entering. So, I 

have got 1000 minus this 300 that is nothing, but 700 data points remaining and with the 

help of these remaining 700 data points, I will try to form the second cluster, third 

cluster, and so on.  

Now, step 4 checks,  if T is empty if it is yes, you terminate the program; that means, all 

the data points have been put into some clusters, else we go to step 2; that means, we 



repeat from step 2 to step 4. So, this is the way actually we do the clustering using the 

entropy-based fuzzy clustering. 
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Now, here, I just want to tell you that this clustering algorithm is very flexible and if I 

just change the value of this β  a little bit there will be actually too much change in the 

obtained cluster and that is why, this clustering algorithm is very flexible. 

Now, here, I am just going to discuss one concept, that is your the concept of outlier. 

Now, actually if you see so, supposing that say I have a got 1000 data points and this 

1000 data points have been divided into a few clusters, for example, say this is one 

cluster, this is another cluster, this is another cluster, this is a fuzzy cluster. So, there 

could be overlapping also.  

So, there could be another cluster say C_4, now what we do is, we try to count the 

number of data points present in each of the clusters. So, we try to find out, how many 

data points are there in the first cluster, that is C_1, the second cluster whose centre is 

C_2, that number of data points in third cluster, number of data points in fourth cluster. 

And, supposing that these 1000 data points have been actually clustered into four clusters 

and we know how many data points are present in each of the clusters. So, after that 

actually, what we do is, we try to define whether all the clusters are valid clusters or 

there could be a few outliers; outliers means actually those data points, which do not 

belong to any of the clusters. 



So, what I do is, we try to count the number of data points present in each of the clusters 

and if that particular data point is found to be greater than equals to γ  percent of the total 

data points, then we declare that this particular cluster is a valid cluster. Now, if I take 

say γ  equals to 10 percent that is one-tenth; that means, 10 percent, that is a 10% of your 

1000, that is nothing, but your 100 points. That means, to declare a particular cluster a 

valid one, there must be at least 100 points in that particular cluster, supposing that there 

are only 30 points in a particular cluster, so-called cluster. So, we define those 30 points 

are nothing, but the outliers and we, in fact, do not consider that particular cluster having 

only 30 points as a valid cluster. 

Now, this is the way actually, we do the clustering and as I have already mentioned that 

while doing this particular clustering. So, we will have to be very careful, so that this 

particular cluster becomes a distinct one. 
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So, we try to define the distinct cluster. So, the cluster has to be distinct, this has been 

already discussed that the cluster has to be compact and at the same time there should not 

be any outliers. So, the number of outliers number of outlier should be as minimum as 

possible. So, our aim is to minimize the number of the outliers and in ideal condition the 

number of outlier should be equal to 0 and our aim is to maximize the distinctness and 

our maximize the compactness also. Now, these I have already discussed, to measure the 



distinctness of the clusters, we consider inter-cluster distances, this I have already 

discussed in the last lecture. 

So, to measure the distinctness actually what I do is, we consider actually inter-cluster  

distance. To measure the compactness, what I do is, we consider the intra-cluster 

Euclidean distance values. So, this is the way actually, we try to find out what should be 

the distinctness, what should be the compactness and we can also measure the number of 

outliers. And, let me repeat, our aim is to reach the clustering, which ensure the 

maximum distinctness, maximum compactness and a minimum number of outliers. Now, 

this is the way actually we use this particular entropy-based fuzzy clustering. 

Thank you. 


