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Flow in Pipes: Major Losses 

Hello, so, in this last module what we are going to discuss is, flow in pipes. If you go to any 

chemical process industry, the first thing probably you will notice that the industry has a 

number of pipes. And when the, say, crude oil needs to be transported from the production site 

where the oil is being drilled and being brought to the surface, it needs to be transported to the 

refineries.  

And then further on, it needs to be transported to, from the refineries to the distribution side. 

Sometimes, it may happen via trucks and at other times it may happen, the transportation of oil 

as well as say, natural gas happens via pipelines. So, flow through pipeline is a very important 

topic for chemical engineers. Now, when we talk about say biomedical engineer, again the size 

of the pipes will vary.  

It may be of the order of few mm, and few centimeters. But again, the flow in pipes is important, 

there the flow will be a laminar for example, when we talk about the cardiovascular network, 

you have different pipes starting from aorta which is about 2.5 centimeter to down to the 

capillaries which are about say, 10 microns or so. So, in, in each case you have network of 

pipes.  

And one of the requirements, that we need to do say, as an engineer to design the pumping 

system, so when you need to design the pumping system, you need to know how much pumping 

power or how much head the pump should be able to provide. When I say head, how much 

pressure that the pumps should be able to provide, that the losses that happen in the system 

they are overcome. So, that is a very important calculation, and the focus in this module 

actually, will be on such things, especially the calculation of head loss in the pipes.  
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So, if you take a typical piping network, you may have a, a pump which push the fluid through 

and then it goes through and you have a number of bands etcetera. So, apart from bands you 

will have say, valves which may control the flow rate, you may have reducers and expanders, 

where the pipe sizes are changing say from, 1/ 8 inch to you are getting to 1/ 4 inch or other 

way around.  

So, all these elements of the piping system, we need to take into account and see what are the 

pressure losses in these elements. Now, we have done a bit of flow in pipes, we have looked at 

laminar fully developed flow in pipe and obtained a relationship for pressure drop in terms of 

flow rate, what we call Hagen Poiseuille law.  

We also looked at turbulent flow in pipes, but for turbulent flow in pipe in the previous module, 

we looked at the velocity profile, we still do not know the, or we have not discussed what is 

the pressure drop when the flow is turbulent in a pipe. So, all these things we will discuss. But 

even when talking about laminar flow, what we discussed is fully developed flow. 
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So, before we talk about the pressure loss, we will just touch upon the topic of developing flow. 

So, if you have say, a pipeline which is say, the pipeline is in a river, then because you can 

consider the boundaries of the river sufficiently far away, then the velocity in the middle of the 

river, probably it will be turbulent in most of the cases. And when it is so, then the velocity at 

the entrance of the pipe will be uniform.  

So, the flow enter with a uniform velocity. Now, when, when it encounters the wall and when 

the fluid encounters the wall, the velocity at the wall needs to be 0 because of no slip boundary 

condition. And the boundary layer start developing on the wall of the pipe, and eventually what 

will happen, these boundary layers will grow as we have seen flow over, in the case of flow 

over a flat plate. And when these boundary layers grow, it will be let us say you have a circular 

pipe, then boundary layer will grow on at each point on the say, entrance.  

Now, these boundary layers will grow and then eventually they will merge. So, the point where 

the boundary layer cannot grow further, is where you will have a fully developed flow, the 

velocity profile will be parabolic, for a laminar fully developed flow. But before that, the length 

that is required, you call that length as developing length or entrance length. So, basically the 

entrance length or developing length, it is defined as the distance from the entrance of the pipe.  

So, in this case, we can say that this length, is what is entrance length or developing length. So, 

we will write this as L development. Now, if the flow is laminar, then you will have a different 

entrance length, and if the flow is turbulent, the entrance length will be different. So, for laminar 

flows, it has been observed that the development length =0.06 Re D. This number you may 



find varying, you may find it say, in some places it is 0.05, in some places you may find it 

0.056.  

So, the development length, it depends on Reynolds number, and a non-dimensional term it is 

say you write as L/D for developing, or you can say if you want to find the length, then it will 

depend on the flow Reynolds number and the diameter. So, it is L/D =0.06 Re. If you consider, 

the Reynolds number 2300 which we take as the limit, when the flow above which, the flow 

does not remain laminar anymore.  

So, the highest development length for a laminar flow, is 2000 when we calculate it for 

Reynolds number 2300. So, if we substitute the values, we will get the entrance length of about 

138 D so for Reynolds number, when the flow is laminar, then the development length is about 

2000, 138 diameters or 140 diameters. When we talk about turbulent flows, because there is 

lot of mixing, in the transverse direction you have eddies in turbulent flows. And that causes 

the flow to develop relatively faster when you compare it with the, laminar flow.  

And it has been observed, that the turbulent velocity profile for, for the mean velocity, it 

develops within 25 to 40 pipe diameters. But other turbulent quantities, such as say fluctuations, 

turbulent kinetic energy etc, they take longer to develop and it may take up to 80 pipe diameters 

or more to develop. So, these numbers give us an idea about, how much length will be required 

for the flow to develop.  
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Now, when we discussed Reynolds transport theorem, and the integral analysis, we looked at 

apart from mass conservation, momentum conservation, we also looked at the energy 



conservation. So, we will go back to the energy conservation and then, there we applied the 

energy conservation for the piping system. So, we will do that again or we will recall that. So, 

if we consider a steady flow through a piping system, we can take a simple pipe with a band.  

So, the flow is coming let us set section 1 here, and it is going out at section 2. So, if we write 

down the energy conservation equation, so this is 𝑄̇, which is the rate of heat transfer, heat 

being given to the system. So, we can consider a control volume here. So, this is my control 

volume, 𝑄̇ is the rate of heat input, 𝑊̇, you could have shaft work and the work due to the 

viscous stresses.  

So, the rate of work is that, that the work is being done by the fluid. So, you have that, and then 

you have rate of change in the energy. And when you write this from a system formulation to 

control volume formulation, you get this, you have the total internal energy of the system + 

this flow work p/ ρ. So, if we consider the flow to be steady, then this term will go away. And 

again, no shaft work then, this term will again, will go away.  

And because the viscous shear stresses, the velocity at the boundaries of the control volume is 

0. So, the viscous, the work due to viscous shear stresses again will be 0. Now, that gives us a 

simpler relationship, you will have a 𝑄̇ which is, rate of heat exchange. That =integral over the 

contents, control surface e + p/ ρ into ρ V. d A. And we can write e the total energy of the 

system, in terms of u + kinetic energy + g z.  

Remember the e, u here is the internal energy or, or we can say specific internal energy. 

Because e is the specific total energy of the system. So, we can expand that and then we can 

consider it for the entire control surface. So, when we do that, the, I would just like to emphasize 

again, because what we have been doing throughout the course is 𝑄̇ is or use Q as, the symbol 

for flow rate, volumetric flow rate. Whereas, here we use 𝑄̇, which is the rate of heat transfer 

and we have been using small u as the component of velocity along the x direction, whereas u 

here is, the specific internal energy of the fluid. 
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So, if we write down this equation, considering the control surface, then we will have the two 

surfaces, surface one and surface two, where the velocities are not 0 and we can write down 

for each term, we can consider the each. So, we have V. dA coming into picture, and then ρ 

together with it. So, because we want to, or we will know the volumetric flow rate or the mass 

flow rate. So, we will write this down, in terms of mass flow rate.  

At location 1 or at the entrance, the V is pointing inward, the area vector is outward. So, we, 

as we do usually, it will be - ρ V d A and at the exit, both of them will be pointing outward, so, 

it will be integral ρ V d A. Now, with this, we can substitute. So, the first term u is internal 

energy. So, we can say the internal energy at section u - internal energy, at section, section 2 

and internal energy at section 1, so u2 - u1, from this we will get and this is 𝑚̇, because 𝑚̇ at 1 

is negative. So, that is why we have got, this - sign here. 

Now, the next term we have this one. So, if we look at this term, again we can write this ρ V. 

d A the pressure at section 1 and section 2, ρ and p are we can say constant, across the section 

or we can take the average pressure. So, p 2/ρ - p1/ρ into 𝑚̇, again the - sign because 𝑚̇ is 

negative at, at the entrance or at section 1.  

And then we have the third term, which will be 𝑚̇ into g z2 - z1. So, we have looked at the 

three terms, and the only term left is this one. So, because it has a V inside it, and when we 

consider, now we know that the velocity is not uniform inside a pipe. So, we will have the 

velocity varying across the cross section. So, we will not consider the, we, what we have done 

is we, we are still having this inside the integral sign.  



Because V will be varying across the area. However, this becomes inconvenient, so what we 

could do? We could write velocity in terms of mean velocity. So, for turbulent flow, it will be 

the average of mean velocity for the turbulent flows. And average velocity in the laminar flow. 

So, this can be done, if we defined a factor to take into account, that we are taking the mean 

velocity in place of the actual velocity.  

So, what we could do is, the term of the form V2/2 ρ V dA we can write, because ρ V dA will 

basically be 𝑚̇. And we can, in place of V2, we can write V bar2. So, when we write V bar, it 

will be constant throughout A. So, it, we will be able to take it out of the integral sign. So, we 

can write this as, when we write this as V2 bar, we have brought in a factor which is called 

kinetic energy coefficient.  

So, we can bring in a kinetic energy coefficient and represent the velocity V in terms of the 

mean velocity, V2. So, this term then becomes α 𝑚̇ into V2/2. So, that gives us the definition 

of kinetic energy coefficient. So, kinetic energy coefficient α =integral over the area, V3. So, if 

we look at here, we can combine this. So, V3 ρ dA / 𝑚̇, because ρ V dA is 𝑚̇ into V2/ 2. So, 

that gives us kinetic energy coefficient.  

Now, if you substitute the values, you will find out because we know what is the velocity 

profile or how the velocity profile changes for fully developed laminar flow, the parabolic 

velocity profile. And we can write area in terms of 2 π r dr, dA =2 π r dr. So, we will be able 

to calculate α for laminar fully developed flow, and you will notice that it comes out to be 2. I 

will leave that as an exercise for you to do.  

If you consider turbulent flow, then the quantity will be very close to 1. So, if you use say, 1/ 

7th power law, then the quantity will come somewhere around 1.06 or 1.07. So, we can 

generally take this value to be α =1. So, you need to remember that when you are solving the 

problems for turbulent flow, the kinetic energy coefficient is generally your kinetic energy 

factors or it is called sometimes, it is generally taken to be 1.  

But when it is laminar flow, then it will not be 1, and you will need to take the value 2. So, 

with this we will be able to write, or we will do, we will be able to eliminate this integral sign 

here. So, let us go back to our energy equation. And we will write this now, by dividing 𝑚̇. So, 

we will write this in terms of 𝑄̇ / 𝑚̇.  
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So, 𝑄̇/ 𝑚̇ =u2 - u1, where u2 - u1 is the change in internal energy + α 2 V22/ 2 - α 1 V12/ 2, 

which is basically kinetic energy, g z2 - z1, the potential energy due to gravity. And then you 

have p2 - p1/ ρ, which is basically the pressure or the change in pressure.  

So, if you remember, we have three term familiar, the kinetic energy, potential energy and 

pressure, which we say, that the change, if the sum of these three is constant along a streamline, 

when we talk about Bernoulli’s theorem and assumption was there, that each should have an 

ideal fluid, the inviscid fluid. Now, if we consider the viscous fluid, so when you have viscosity, 

there will be friction at the walls. So, the friction comes into play. So, to take into account the 

losses due to friction, you have these two terms.  

So, we will rearrange these systems, these equations. So, we can bring in 𝑄̇/ 𝑚̇ in here, on this 

side. And this all come on the other side. So, we can write u2 - u1 - 𝑄̇/ 𝑚̇. So, let us look at 

what is u2 - u1, is basically that is, where u is, when you call it C into t. So, basically when u 

is changing or when u is increasing, you will have the mechanical energy change into thermal 

energy. So, because of frictional losses, the mechanical energy is going to change into thermal 

energy. And some of this energy may be loss because of the heat transfer.  

So, that is the total losses, if you consider, this gives you the total loss due to friction. And what 

is this? This is the mechanical energy we consider, p/ ρ + α V1 bar2/ 2 + g z1. So, that is the 

mechanical energy at location 1, at the entrance. And that is the mechanical energy at location 

2, at the exit. So, if we would have said that it is an ideal fluid, it is an inviscid fluid, then this 



term would have become 0, because the losses are negligible and this would be equal to 0. So, 

you will say that this is the Bernoulli equation.  

Now, this is the Bernoulli equation, but with consideration or with the taking into account, the 

frictional losses. So, this term is basically what we call, the total losses or so, total loss of 

mechanical energy per unit mass, because, the unit that we represent in per unit mass energy, 

per unit mass it will be meter2 per second square, you can see it easily from here g is meter per 

second square into meters. So, you have meters2 per second2 and this is total losses.  

Now, it also is represented in terms of, where the units are in terms of meter, as we have been 

looking at, or we have been doing with the Bernoulli’s equation. So, we can represent it as 

capital HLT. So, L represents here loss, and capital T represents total. So, small h, we will use 

when the units are in meters2 per second2. And we call it loss in energy per unit mass. And 

when we represent it as, in terms of capital H, the unit will be meter and we call it head loss.  

So, head HLT is equal to, just this energy or the mechanical energy lost per unit mass / 

acceleration due to gravity, so that will be our other form. So, now, the question comes, that if 

we have a flow in pipes, we can use this very simple equation to find out the pressure 

requirements p2 - p we can calculate, or p1 - p2 we can calculate, that how much pressure or 

how much head needs to be given, when you use a pump, so which pump you need to choose. 

But, the problem is that, we do not still know, what is head loss? So, now, the question comes 

that, what are these head losses.  
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So, we can combine this, this should have been the head losses. So, we can combine this, and 

say that the total head loss they can be divided into two, major losses and minor losses. It is not 

necessarily that it is the major losses, which is always greater in the magnitude of major losses 

is always greater, it is not necessarily. It is the naming convention that we have. And so, major 

losses is basically the, the losses due to friction when you have a constant area pipes.  

So, we will discuss this in detail in the next slide. And then another is, another category of 

losses is minor losses. So, anything which does not come basically under this category, that 

losses due to friction in constant area pipes, that will come, that will be covered in minor losses. 

So, we think about, we talked about developing flow. So, in the developing flow, there will be 

the pressure losses will not be same as in the fully developed flow.  

So, to take into account inlet and exits, it will be in minor losses. Then we have reducers and 

expanders, when the diameter of the pipe is changing, it may change suddenly or it may change 

gradually. So, you will have a enlargement in the pipe diameter or a reduction in pipe diameter.  

So, the losses at reducers and expanders will again come in minor losses. Then you will have 

number of bands in your pipelines. So, the losses at the bands, will come in minor losses. And 

you will have a number of valves and fittings etc. So, those will also come under minor losses.  



(Refer Slide Time: 26:28) 

 

So, let us look at the major losses. So, the major loss can be defined that, if we consider a pipe 

of uniform cross-sectional area. So, so a straight pipe, the cross-sectional area is constant and 

we consider that, that this flow or this pipe is horizontal. So, when the pipe is horizontal, with 

all these assumptions, we can write down the head loss equation. So, HL total =p1/ ρ α 1 V12/ 

2 + g z1 - p2/ ρ + α 2 V22/ 2 + g z2 in of course, this all in bracket here.  

So, when you say that it is a horizontal pipe, then basically z1 =z2 and this will cancel out. 

When you say, that the pipe is of constant cross-sectional area. So, area everywhere including 

at section 1 and 2 are equal. So, you will have A1 V1 =A2 V2. And these will also cancel out. 

So, you will have HL total =p1 - p2/ ρ. So, basically ∆ p/ ρ is head loss. So, remember the 

definition that head loss, even if a pipe network we talk about, is having pipes of different 

cross-sectional areas, the head loss is ∆ p/ ρ.  

Because all the other things for example, the change in cross-sectional area will be taken into 

account, in the minor losses. So, that is my head loss, but when you look at the head loss, so 

say, head loss in 1 inch diameter pipe and 2 inch diameter pipe needs to be calculated 

separately. Because this will be dependent upon the diameter of the pipe. So, when we are 

talking about here, because it does not have, we consider that the flow is fully developed.  

So, there is no inlet or exit losses, we are not looking at here any valves, any fittings, any 

reducers and expanders because their cross-sectional area is constant. So, there are no minor 

losses present. So, basically our total head loss in such case will be =the major losses ∆ p/ ρ. 



So, major loss is ∆ p/ ρ, which is the pressure drop per unit density. And so, this is the definition 

of head loss.  

And it does not include the gravity term. So, it is independent of pipe orientation. So, when, 

when you are looking at, even if the pipe is say vertical or inclined, it does not change, the 

major loss value does not change. Because when you will be writing the energy equation, you 

will have a different term say, z1 - z2 you have to take into account for that. So, the major 

losses that, they do not depend on the pipe orientation.  
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Now, we sort of know now, that if the flow is laminar, pipe is of constant cross-sectional area 

and the flow is fully developed, then in the laminar flow, we can calculate major losses, we 

have this Hagen-Poiseuille equation. So, we will be able to do that. But what we do not know 

is still, how to do it for turbulent flows. So, let us discuss for turbulent flow. Now, because, 

nothing we have learned until now for turbulent flows, there is no analytical solution that we 

could derive.  

And in the same way, we will not be able to find the pressure drop also analytically like, what 

we did for laminar flow. So, it is not possible and when we could not do anything, analytically 

the best way is to look at the, the powerful tool of dimensional analysis. So, we could go back 

and see that, what are the factors on this pressure drop through a pipe in turbulent flow might 

depend?  

And so, we can list down, that the pressure drop may depend on the pipe geometry. So, pipe 

geometry when we talk about, it may depend on the diameter of the pipe as you see here, it 



may depend on the length of the pipe, as well as it may depend on the roughness of the pipe. 

So, we can write this roughness of the pipe in terms of, small e here. Now, it can also depend 

or it will depend on the properties of the fluid that is being used.  

So, it may depend on the viscosity of the fluid, it will depend on the density of the fluid. So, ρ 

and μ come into picture. And then it will depend on the flow velocity. So, we will take a mean 

or average flow velocity, let us say V bar. So, now, we will have this, that ∆ p is a function of 

all the six quantities. And we can group them in dimensionless groups. What we could do is, 

we can do the Buckingham pi theorem or use Gibson’s method or just by looking at the 

variables we can define, the non-dimensional groups. 

So, if we take let us say, as ρ V bar and diameter as our repeating variables, then we can just 

see that what are the non-dimensional groups, we can form. And we see here that there are two 

more quantities, which had the dimensions of length. So, we can simply write them as L/D and 

e/ D. So, two dimensionless groups we have already formed. Now, we have been doing 

dimensional analysis and we are very familiar dimensionless group, we have as Reynolds 

number.  

So, we can define it as say, ρ V bar D/ μ or it is reverse, depend on how do you do it, if you do 

Buckingham pi theorem analysis, then you will get is μ into ρ - 1 V bar - 1 d - 1. But what we 

are looking at is dimensionless group, it is 1/Re or Re does not matter. Now, the last thing is, 

we have covered all the dimensionless, all the dimensional quantities except ∆ p. So, where 

you, non-dimensionalize ∆ p, you will see that you will have a ∆ p/ ρ V bar2.  

So, that is the dimensionless groups, because we have been seeing or we have been looking at, 

we can non-dimensionalize with the dynamic pressure. Pressure with, so pressure or ∆ p is non-

dimensionalize by ρ V2. So, we can write down that ∆ p/ ρ V2 is a function of these other three 

non-dimensional groups or dimensionless groups.  
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We said that, ∆ p/ ρ is h l, major or we, we found that the major losses =∆ p/ ρ. So, this term ∆ 

p/ ρ V2 will be major losses / V bar2. Now, the experiments have shown, that this is the head 

loss or major loss is directly proportional to L/D, because the dimensionless and dimensional 

analysis can give us the information that, what are the relevant dimensionless or dimensionless 

groups, but we cannot find out from the dimensional analysis, that what is the function or in 

what way they are related.  

So, now we need to go to the experimental data and try to see what relationship could be there. 

So, the experimental data has shown this, that L/D is directly proportional to head losses. So, 

we can write this, the functional dependence in this form. You might see that we have changed 



this to, in the previous slide it was φ 1. Because it was ∆ p/ ρ v2, then we could write this in 

terms of, because here we had, 1/Re.  

So, we have changed it to say φ 2, because we have changed to Re here. And then again we 

have changed it to φ 3 because the function will change. But, this is just to differentiate the 

functions, we still have that it is a function of Re/ D. So, we will write this h l, major / 1/2 ρ 

V2, because 1/2 ρ V2 is, is what we have called kinetic energy. And so, kinetic energy per unit 

mass, we can write as 1/2 of V2.  

So, h l, major/ 1/2, 1/2 V2 =L/D φ 4 into Re e/ D. Again, because we have / 1/ 2, so a different 

function. Now, this functional dependence that, this function depends on Reynolds number and 

the roughness factor e. So, this is group under a factor, which we call friction factor or Darcy 

friction factor. So, Darcy friction factor we define as, this = φ4 e/ D and that is h l, major / 1/2 

ρ V2/ L/D.  

So, we can bring in L/D in the denominator here. So, that is the definition of Darcy friction 

factor. And Darcy friction factor is a function of Reynolds number and L/D. So, we can write 

down or we can represent the major losses in terms of Darcy friction factor, taking into account 

that Darcy friction factor is the ratio of h l, major / or / 1/2 V/2 L/D. So, if we write this in terms 

of h l, major, where it is in meter2 per second2, then our definition will be this. 

If we write into capital H where the unit is in meter, then we will need to divide by g. So, V y, 

V bar2 / 2 g. So, that is our definition of Darcy friction factor. Now, there is another friction 

factor, that is defined which is called Fanning friction factor. And it is just one fourth of Darcy 

friction factor. The, the commonly used friction factor we have is Darcy friction factor, but 

every time we need to be careful that, the friction factor that has been given is Darcy friction 

factor or Fanning friction factor.  

So, now, we have defined, what we have done is, we looked at that on what factors can ∆ p 

depend upon. And then we grouped all those in dimensionless groups. We used a bit of 

information from experimental analysis and said that, these major losses is dependent, is 

proportional to L/D. And then remaining function we have defined as, Darcy friction factor, 

which is a function of Re and L/D.  

So, what now we need is, what is f as a function of Re and L/D. So, if we know Re and L/D, if 

we know the pipe length, pipe diameter, fluid, so which will give us the density and viscosity 

and the velocity. So, we will, if we know the Reynolds number, L/D then can we calculate f? 



That is the question, we will ask ourselves. Of course, we could do it for laminar flow, and we 

can rearrange the equation that is obtained for pressure drop in laminar flow.  
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So, we know for laminar fully developed flow, that the Hagen-Poiseuille law gives us that the 

pressure drop per unit length =128 μ Q into π D2/ 4, where Q is volumetric flow rate. So, we 

can expand it or we can write Q in terms of mean velocity V bar into cross-sectional area π/ 4 

D2. So, we will see there, that π and π will cancel out, and D2 will cancel out. So, we will have 

D2 remaining here. This will give us 32.  

So, we can write because, the major losses ∆ p/ ρ, so, we can find major losses for laminar 

flow, that will be 32 and this L will go on the other side, on the right hand side. So, 32 and you 

have 2 D here. So, we will write 32 into L/D μ into V bar /, one more D is remaining, so D and 

V / ∆ p / ρ. So, this ρ comes in here. Now, we can rearrange it further, because we have μ V 

bar and D here and row as well. 

So, we can try to arrange it in terms of a Reynolds number. So, what we have is a V bar missing. 

So, we can multiply by V bar here, and in the denominator and numerator. So, what we get is 

64 because we have / 2 here. So, we will get this in terms of friction factor. So, there we have 

in the definition V2/ 2. So, when we divide by 2, we will have this at 64 into L/D μ/ D ρ V bar 

into V2/ 2.  

So, we can write this as 64/ Re into L/D into V2/ 2. And then now, we bring in the definition 

of Darcy friction factor, which is h l, major / V2/ 2 into L/D. So, we substitute this L/D V2/ 2 

and the friction factor we will get is, that f =64/ Re. So, for a laminar flow f =64/ Re.  



When we talked about or when we derive this relationship, we did not consider roughness 

factor or we did not take a reference factor into consideration there. But the experiment show 

that for laminar flow roughness does not come into picture and, and f is 64/ Re even for rough 

pipes. So, roughness does not have an effect in the laminar flow in pipes.  
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Now, the next question comes that, what if the flow is turbulent. So, there is no functional 

dependence that one could obtain except by the experimental data. So, a very standard chart 

has been prepared, which is called moody’s diagram. And what it represent is, the functional 

dependence of friction factor f, as a function of Reynolds number and as a function of 

roughness factor. So, you can see this roughness factor is e/ D here.  

Now, when the flow is laminar in this range, then you see a straight line because the graph is 

log log plot plot as you can see from the axis. So, the x axis is log log and the y axis is also a 

log log plot here. So, you see here that, this is a straight line and for laminar flow you have 64/ 

Re, it is independent of roughness factor. Suddenly as the Reynolds number increases, so you 

see a sudden jump in the friction factor.  

Now, with the increase in Reynolds number, in the turbulent regime, what you see is there are 

different lines and you have the relative pipe roughness or e/ D value is given here. So, 

depending on the roughness factor, you will need to follow different curves. You can see that, 

at higher values of roughness, the friction factor becomes independent of Reynolds number 

very early. Even at low values of roughness, say of roughness of 10-4, eventually at the 

Reynolds number higher than 103 106 here.  



It becomes independent of Reynolds number. And so, so, the question comes, why do we have 

the friction factor having a jump here? And the question or the answer lies in the velocity 

profile. So, if we define the velocity profile on a laminar flow and if turbulent flow. So, this is 

for laminar flow and this is for turbulent flow. So, you have a very thin viscous sub layer, and 

the velocity profile is fuller. So, the gradient is larger as well, so in the turbulent flows, so the 

wall shear stress is going to be high, and that is why you have high major losses and as a result 

friction factors are larger in the turbulent flows.  

Now, the next question, that why we have roughness effect in turbulent flows, but not in 

laminar flows? So, if we look at, in the turbulent flows, we discussed that in the turbulent flow 

near the wall, we have a viscous sub layer. And these viscous sub layers will be very, very thin, 

higher the Reynolds number, thinner the viscous sub layer is going to be.  

So, if that is the case, then when you have the rough pipes, then the roughness factor or this 

might be the viscous sub layer can be within the, of the order of roughness. So, this could cause 

lot of disruptions. So, that is why the roughness has an effect in the turbulent flows. Now, if 

we summarize the Moody's plot, so we can say that laminar flow in pipes, it is a function of 

Reynolds number only and not on the roughness factor.  

It decreases with increase in Re for laminar flow, 64/ Re we have seen. And then there is a 

sharp increase here in transition. And in turbulent flows depending on the roughness is 

decreases gradually, and then it becomes constant at the higher Reynolds number values. And 

these curves has been prepared with a lot of experimental data, appears to be quite accurate 

within ±10 percent. So, that this curve could be used to find or to calculate, but if you want to 

code it, if you want to say, write a code for major losses in the pipeline, then it will be easier 

to use some algebraic relationship. So, few algebraic relationship, we already have for laminar 

flow.  
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For turbulent flow few algebraic relationships have been developed, which represent moody 

chart or friction factor. So, one that is developed by Colebrook is, used quite generally. So, that 

is 1/√friction factor =- 2 log it is, log base e. So, this is e/ D / 3.7 + 2.51 / Re √f. Now, if we 

know Re, if we know the flow Reynolds number, if we know the roughness of the pipe, then 

we can see that this equation is explicit.  

So, by explicit we mean, that you have f in the left hand side and you also have f on the right 

hand side. And you cannot separate those that, you can bring both of them on one side because 

you have a log here. So, what we will need to do? We need to solve it, iteratively. We will need 

to assume a value initially, that let us say, f =0.1. And then find what is the new value of f and 

do this again and again until we reach the value of f, that the value we guessed that, that start 

of calculation and the value that we find, after the calculation they are not very different.  

So, it has been shown or if you do the calculations using different values, that even in any case 

you reach to a fairly accurate value, which is up to three significant figures, up to three places 

of decimal, within few iterations you get this value accurately. And as a guide, you could use 

f =0.1, as an initial guess which can help you in converging faster.  
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So, the Colebrook relationship, it is slightly difficult in terms of that we need to solve it 

iteratively. And so Halland equation is another one. And in this it is, it is an approximation of 

Colebrook equation, but there is no implicit behavior like we do not, we do not need to solve 

it iteratively. So, we could calculate, if we know the value of Reynolds number and if we know 

the value of e/ D, then we can calculate it directly using this equation.  

All these take into account the, e/ D roughness factor, but if the pipe is smooth, then using the 

relationships from the Blasius correlation, which is f =0.316 / Reynolds to the power 0.25. So, 

this is a simpler co-relationship and it can be used for smooth pipes.  
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So, what we have discussed in summary today is that, we have looked at the developing flow 

first, that what is developing flow and what are the development lengths for laminar as well as 

turbulent pipes for laminar flows, we said that L/D =0.6 Re. And for turbulent flows, the flow 

tends to develop the mean velocity profiles tends to develop between 25 to 40 D.  

And the other turbulent quantities may take up to 80 diameter or so. Then, we looked at the 

head losses, that how we can calculate. So, using the energy equation and Reynolds transport 

theorem, we derived the Bernoulli’s equation in the form, where we also have the frictional 

losses or the head losses. And then we define that, what could be the different types of losses, 

major losses and minor losses.  

And we looked at then, what is major loss, so we should, said that major loss is basically the 

loss for fully developed flow in a pipe of constant cross-sectional area and horizontal pipe. So, 

that way we define that h l, major, or the major loss which =∆p/ ρ, and from that we defined 

Darcy friction factor or Fanning friction factor. And the values of friction factor, f =64/ Re for 

laminar flow. And, and the relationships or the moody chart for f in turbulent flow. So, we will 

stop here, and then in the next class we will discuss the minor losses etc. Thank you. 


