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Turbulence Boundary Layers 

Hello, so, in this lecture we are going to talk about turbulent boundary layers. Now, in this module 

we have been talking about turbulent flows, whereas we looked at boundary layers and in 

particular, laminar boundary layer in the previous module. So, when we talk about turbulent flows, 

in the previous two lectures, first we talked about what are the characteristics, properties of 

turbulent flows. And then we said that it is characterized by the randomness and therefore, the 

velocities will have a lot of fluctuations.  

So, to define turbulence flow or to analyze turbulent flow, we can decompose into the mean 

velocity and fluctuating velocity. And then, we showed the equations for mean flow, we did not 

derive it, but we said that, if we average the Navier-Stokes equations over a sufficient length of 

time, then we will get what is called Reynolds-averaged Navier-Stokes Equation for mean flow. 

And it will have an additional term when you compare with the Navier-Stokes equation and this 

term was of the form ρuʹ, uʹ over bar, where bar represents the averaging.  

Now, this ρ uʹ, uʹ or ρ uʹ vʹ, this is Reynolds stress or the stress caused by turbulent fluctuations 

or a form of a stress. And then in the next lecture, we talked about flow in a pipe. And we saw that, 

based on the experimental observations, one could develop an empirical relationship of the form 

of power law, where u bar = u × (1 - r/R) 1/7 or raised to the power of 1/n. Such kind of power-law 

was developed for velocity profile in turbulent pipe flow.  

Now, we could see that this power-law profile was not valid in the near wall region. So, that is 

why in the near wall region, people studied the velocity profile carefully and it was observed that, 

for all the cases, it may be a turbulent flow in a pipe or a turbulent boundary layer, there was a 

universal behavior in the near wall region and one could define a viscous sub layer, where viscous 

effects are important. And then a outer turbulent layer, where the turbulent effects are important.  

So, now, with all this background, we will try to understand a bit more about the turbulent 

boundary layers and try to use momentum integral equation. So, remember, when we talked about 

laminar boundary layers, using Reynolds transport theorem, we derived a momentum integral 



equation which could be used to analyze the integral quantities for a boundary layer. So, let us 

look at this first.  
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So, this is typical image for a boundary layer over a flat plate that we have been discussing. So, 

this is the laminar boundary layer and here you have a turbulent boundary layer. Of course, you 

can see that the turbulent boundary layer is significantly thicker than what you have, say for 

laminar boundary layer. So, turbulent boundary layer is thicker. The slope you can see here, the 

slope is smaller and slope in the turbulent flow is significantly larger.  

So, as you move along the plate with x, the growth of turbulent boundary layer is faster with x. So, 

as we move along the flat plate. Now, unlike, say in pipe flow when we talk about, we say that 

when you increase the velocity if you are talking about same fluid, if you increase the velocity or 

if you increase the flow rate, then the flow becomes turbulent.  

Whereas, in a, when you are talking about flow over a flat plate then, what happens that initially 

up to a certain distance from the leading edge, let us say this distance is you call it x critical. The 

boundary layer is laminar. And then after that it starts becoming or it transitions to turbulent. So, 

it will depend for example, if your plate is long enough then for every flow velocity, you might 

have a turbulent boundary layer over a flat plate.  



Now, so, next question comes, when do we say or what is this number for x critical? Now, it will 

depend on a number of factors. The first and foremost is of course, the plates should be smooth. 

So, all the analysis that we have been talking about, everything we have and inherent assumption 

that the pipe is smooth or the flat plate is smooth. If you have a roughness on the plate, then that 

may trigger turbulence earlier. So, it will depend on the roughness and it will also depend the other 

disturbances that may cause, lot of disturbances to the flow and the turbulence may trigger at an 

earlier length.  

In general, the number that is accepted are quite often quoted is Reynolds number, say Re x of 5 

× 105 is considered to be the critical Reynolds number, based on x. So, this Re x is basically, U∞ 

x/ν, where ν is the kinematic viscosity. So, that is the number generally used. Now, if your flow is 

relatively free from disturbances then this number could be say, 3 × 106, or if there are a lot of 

disturbances then this number could be 1 × 105 or so.  

So, this is just a number that you could use for analysis. So, that is the number and from this, you 

could calculate, what is the value of x for a given value of U∞? What is the value of x at which the 

flow of a particular fluid, so fluid will come or property of fluid will come in ν. So, for a particular 

flow, at a particular fluid velocity U∞, what is the number or what is the length at which the 

boundary layer will become turbulent or will not remain laminar anymore?  

Now, unlike laminar boundary layer, so in the laminar boundary layer, we said that in the boundary 

layer viscous effects are important. Whereas, in the turbulent boundary layer, we will have layered 

structure, so remember, when we talked about near wall turbulence in pi flow, we said there are 

three layers, the viscous sub-layer and the outer layer, and in between the buffer layer or what is 

called overlap layer.  

So, similarly, we have three layers or you can say two layers in turbulent boundary layers. It is 

same in both the cases. The only thing is that we say that, in the viscous sub-layer, the viscous 

effects are important and in the outer layer, the viscous effects are not important or the turbulent 

effects, turbulence effects are important. Now, because we need to have an overlap region, so there 

is a buffer layer or the overlap layer, so we call it three-layer structure.  

So, there is no inconsistency, so to say. You could even say that this is a three-layered structure. 

But from the physical point of view, there is a very thin layer near the wall in which viscous effects 



are important, which we call viscous sub-layer. And the outer layer, where turbulent fluctuating 

motion is important and it causes the friction and where the Reynolds stress will be dominant. So, 

this is fully turbulent what is called, outer layer. Remember that this is not, this is not this outer 

flow. 

When we talk about, we have a viscous sub-layer and a outer layer. And a outer layer and in order 

to match these two, we will have a buffer or to have same nomenclature, we should call it overlap 

layer. So, that tells us that the, the logarithmic law, the linear velocity profile in the viscous sub-

layer u+ = y+ and logarithmic law that u + x =some constant × ln y + another constant, that 

logarithmic law was valid in the overlap layer. So, we could still have those laws valid for the 

turbulent boundary layers and we will use them. 
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So, let us look at the turbulent boundary layer on a flat plate. And we will consider that this plate 

is smooth, there is no pressure gradient along the flow direction. So first, we will write down the 

momentum integral equation. So, this momentum integral equation, we derived when we looked 

at the boundary layers. So, in this, if we say that the pressure gradient is 0, so from because in the 

boundary layers, when the pressure gradient is 0. So, that means, dp/dx = 0.  

And in a boundary layer, when we derive boundary layer equation, we said dp/dy is approximately 

0. So, pressure is not a function of y. So, the same pressure field, what is there in this outer flow 



will be valid in the boundary layer. So, we could write that, p + 1/2 ρ u2 in the inviscid region. And 

from that, if dp/dx = 0, we can deduce the dU∞/dx is also going to be 0. So, this term will go away.  

Now, just to remind ourselves, we looked at the governing equations for laminar boundary layers 

where we took the two-dimensional equations in Cartesian coordinate for flow over a flat plate. 

So, the similar equations one can write down for turbulent flow over a flat plate. The only 

difference we will have that we will have an additional term in terms of Reynolds stress. And these 

equations will be for the mean flow or mean velocity and mean pressure field.  

So, this equation simplifies to τ w/ρ = U∞
2 d θ/dx. Now, we will also bring into picture, the 

definition of Cf. Which we call, a skin friction coefficient. So, it is nothing but a non-dimensional 

form of wall shear stress. So, you have τ w and it is being non-dimensionalise by 1/2 ρ U∞
2, where 

U∞ is the free stream velocity.  

Now, if we look at these two equations, then we can write that τ w/ρ, = Cf/2 × U∞
2. And we can 

substitute this here, U∞
2 will cancel out and we will get. What we will get is Cf/2 = d θ/dx. 

Remember that this θ is, momentum thickness. So, this form of momentum integral equation is 

valid for laminar as well as turbulent flow, the only assumption here we had is that the pressure 

gradient is 0.  

Now, we also bring into picture, the definition of friction velocity, u τ which we defined to define 

the velocity profile near the wall. So, u τ is called friction velocity, in many places you might also 

see it, written as u*. So, this = (τ w/ρ )1/2 and this will give you a unit of velocity.  

So, we can write from τ w/ρ, we can use Cf/2 U∞
2. So, u τ will become U∞ Cf/2. Again, this has 

an assumption that dp/dx = 0. So, we cannot use it always, only when dp/dx = 0, then we can use, 

u τ = U∞, √Cf/2.  

Now, the question comes that what we need to do is solve this momentum integral equation. And 

we solve the momentum integral equation for laminar flow over a flat plate, where the pressure 

gradient was 0. Now, in this case, when we talked about laminar flow or a flat plate, we assumed 

a velocity profile and that velocity profile was parabolic velocity profile, probably in analogue 

with what we observed in flow in a, say laminar fully developed flow in a pipe. So, if we, what we 



could do? We could assume a power law kind of velocity profile or say 1/7th power-law kind of 

velocity profile.  

But the problem with this profile is, that it is an approximate profile and it is not valid in the near 

wall region. We saw in the previous class, that if you use power-law velocity profile in the near 

wall region that you will, then you will get the gradient of this mean velocity to be 0 at the wall, 

and that will result τ w being 0, which is not true. So, we could not use because, in that case our 

Cf or τ w useful results. So, what we could do?  

The another velocity profile we have, especially in the near wall region is logarithmic velocity 

profile, which is for the overlap layer region. Now, overlap layer region means, it matches down 

to the viscous sub-layer and it matches to the outer layer. So, we could approximate that the 

logarithmic or we can assume, that the logarithmic velocity profile is valid across the turbulent 

boundary layer. And using that we could derive or we can analyze the momentum integral 

equation. So, we will do that. 
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This is the logarithmic velocity profile, which is basically u bar/u τ, which we call u + also, is 

equal 2.5 times ln, y u τ/ν + 5. So, this is also called y + yu τ y ν. When y = δ, so that means, where 

δ is the disturbance thickness or boundary layer thickness, so at this region, at this point, if the free 



stream velocity is U∞, then u bar will be =U∞. So, we can write this equation, we can substitute u 

bar or mean velocity = U∞ and y = δ.  

Now, in the previous slide we looked at Cf/2, we could write that √Cf/2= u τ/U∞. So, we could 

substitute this value here, that will be √2/Cf. Similarly, we could rearrange this. So, we can write 

this δ U∞/ν × u τ/U∞.  

So, this is a kind of Reynolds number, where the length scale is δ boundary layer thickness. So, 

we will call it as Re δ, which represents that the length scale here is δ boundary layer thickness. 

So then, we can substitute U∞/u τ = √2/Cf = 2.5 ln Re δ, which is this. And u τ/U∞ again√2/Cf + 5.  

Now, we have brought in the form of Cf. This equation has come in the form of Cf and n δ, which 

is basically hidden in this Re δ as you can see from here. Now, what we do is, we could write using 

this equation, we could find out the value of Cf for different Re δ. You will need to do a bit of 

iteration, but that is very simple. You could code this in an excel and try to find out the values. So, 

what I have done, I have calculated it for different Re δ, the values of Cf.  

And as suggested say, by F M White that we could fit in this data and try to find out a equation. 

So, that equation, if you find the best fit curve for this data for using these four data points only, 

then you will get a simpler relationship. Because this relationship, though it is accurate one or 

relatively accurate, but it has a logarithmic form. So, to simplify the mathematics, what they 

suggested that we could write down a simpler relationship between Cf and δ and which will be 

valid for at least these values of Re δ.  

Remember that this is Re δ, not Rex and δ is less than x. So, that is why this, 1 raised to the power, 

1 × 104 and 105 are coming into picture here. Even in these values of Reynolds number δ, Re δ the 

flow will be turbulent, because Rex will be much, much higher.  

So, we will have Cf, when we fit into this. We can write this 0.02 Re δ - 0.165 or which is close to 

Re δ this number is - 0.166. So, we can write in this form 0.02 Re δ - 1/6. Now, what we have is a 

simpler relationship between Cf and δ.  
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So, our momentum integral equation, when we wrote down it in terms of Cf, it was Cf/2 d θ/dx. 

Now θ, remember that it was that we will need to know the velocity profile integral 0 to δ u/U∞ - 

× 1 - u/U∞ × dy. So, we will need to know u as a function of y or u/U∞ as a function of y/δ. So, we 

need to know the velocity profile and we could use, because in the entire boundary layer, we have 

assumed the logarithmic velocity profile. So, we could integrate that velocity profile, but again, 

the integration will be quite involved.  

So, what one could do is, one could use the power-law velocity profile to find out θ. So, if we do 

that, we already have Cf in terms of δ. And if we calculate the θ, in terms of δ, then we will have 

a differential equation for δ. We can solve this differential equation, with certain limits. And then, 

we will be able to find what is the expression for δ. So, to calculate momentum thickness, we can 

assume empirical velocity profile, which is one-seventh power-law velocity profile.  

Now, for a pipe flow, we had one-seventh power-law velocity profile was u bar/U = 1 - r, where r 

is the radial coordinate, r/R, which is pipe radius raised to the power 1/7. Now, in analogue, with 

that we could write for turbulent boundary layer, u bar/U, this basically is, you could write it R - 

r. And what is R - r for a pipe flow? So, this is r, this is R, and basically this value is R - a r, which 

is the distance from the wall. So, we can write if this is y, so, distance from the wall y. And in 

place of R we will use the turbulent boundary layer thickness.  

So, y/δ 1/7. So, that is what we will have, that in the turbulent boundary layer u bar/U it actually, u 

should have been u bar/U∞ = y/δ 1/7, because we are using U∞ as the free stream velocity. Of course, 



again, it will not be valid close to the wall. That is the region, that we have used logarithmic 

velocity profile to calculate wall shear stress.  
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So, let us calculate momentum thickness θ, is by substituting the velocity profile. Now, we could 

simply solve this integral by assuming say, that y/δ 1/7= η. So, that will give us that y/δ = η7 or 

from that we can write that dy = 7 × δ × η6 × d η. So, we can substitute this for dy.  

And the limits will be that when y = 0, η will also be 0 and y = δ, then η will become 1. So, we 

will have our θ = integral 0 to 1 the limits and the first term y/δ 1/7 will become η. The next term 

within the bracket will be, 1 - η × 7 δ η6 d η. Now, δ is the boundary layer thickness. So, it is 

constant with respect to y say 7 is constant, so we can bring them out. And that will basically 

become, when you bring all those terms together that within bracket you can have η raised to the 

power 7 - η 8 d η.  

And when you integrate it, this will become η8/8 - η9/9. And after substituting the limit, you will 

have 1/8 - 1/9. So, that will be 9 - 8/72 or 1/72. So, you will have θ = 7 δ/72.  
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So, now we have Cf in terms of δ, we have θ in terms of δ. We can substitute both. So, when we 

substitute in this then this del, Cf/2 will become simply 0.01, Re δ - 1/6 or we can write Re δ in the 

expanded form, where we have δ explicitly, U∞ and ν are constant. This = 7/72 d θ/dx. So, this will 

be d δ/dx.  

Now, we can integrate it, we can take the variables on each side. So, we can take δ on one side, 

so, that will be δ × 1 δ 1/6 × d δ = 72/7. So, that will come here, 72/7 × 0.01, which will give us 

0.1033 and U∞/ν. So, and this is multiplied by dx. So, dx × U∞/ν - 1/6. And when you integrate it 

that will be δ 1/6 + 1, so 7/6, δ 7/6. So, it will become 6/7 δ 7/6 and all this is constant. So, we will 

have simply x here, + a constant of integration.  

Now, the next question comes, how do we find this constant? So, a gross assumption probably has 

been made. But that is neglecting the laminar boundary layer over the leading edge. So, the 

assumption is that, when you talk about turbulent boundary layer, there is, in the certain region, 

there is a laminar flat plate. So, it does not start at x =0, but what we assume here that, this turbulent 

boundary layer starts from x = 0 itself. So, that is the assumption that, at δ, at x = 0, δ = 0. So, that 

will be 6/7 δ raised to the power 7/6. So, this constant basically becomes 0.  
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Now, we can rearrange it in a simpler form. So, we can do this and we will get δ = Re x - 1/7 × x 

multiplied by some constant. So, that will give us δ/x = 0.16 Re x - 1/7. So, we get a relationship for 

turbulent boundary layer thickness.  

The assumptions here are the plate is smooth. The pressure gradient over the plate is 0. The other 

assumption we have assumed, the velocity profiles. We have assumed, remember, we have 

assumed two velocity profiles, we have assumed the power law profile, to calculate momentum 

thickness. We have assumed the logarithmic velocity profile to assume τ w.  

Now, if the integration is cumbersome, probably we could use the logarithmic velocity profile for 

both the cases. And use the numerical integration to simplify things. So, this gives us a relationship 

for turbulent boundary layer thickness.  

Now, we could use, this expression to calculate Cf or a skin friction coefficient. So, that is 0.02 Re 

δ-1/6 and we can substitute the value of δ here. And what we will get after a bit of algebra, we will 

get Cf = 0.027 Re x - 1/7. So, that is this skin friction coefficient. 
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Now, we know the skin friction coefficient, we know the boundary layer thickness, we could also 

calculate what is the drag on a flat plate. Let us say, where the turbulent boundary layers starts 

from x = 0 itself. So, that will be τ w × b dx, where b is the plate width normal to the screen. So, 

we can write τ w in terms of Cf × 1/2 ρ U∞
2 × b dx and then we can replace the value of Cf there.  

So, CF is basically 0.027 × Re x - 1/7, and 1/2 ρ U∞
2 is constant with respect to x. So, that can come 

out of the integral. And b and 0.027 are also constants. So, we basically have a constant into 

integral 0 to L x - 1/7dx and when we do that and put the limits, then what we will get from this 

integral x - 1/7+, so that will be basically 6/7.  

So, after substituting the limits you will get 7/6 × L 6/7. So, that is your drag force. Now, we can 

simplify this further and write this down in terms of drag coefficient. So, drag coefficient is drag 

force/1/2 ρ U∞
2 multiplied by weighted area, remember that for a flat plate which is aligned with 

the flow, we use the weighted area. And in this case, we assume that flow is happening only on 

one side of the plate. If the flat, if the flow is happening over both sides of the plate then this will 

be 2 bL, but here we assume that is only on one side of the plate. So, area is bL.  

And we can substitute the value of FD from here. The ρ∞
2 will cancel out, b will cancel out and 

what you will get is this (0.027 U∞/ν) - 1/7 × 7/6 L 1 - 1/7, so when you combine this and this, you 

will get Re L - 1/7, multiplied by 7/6 × 0.027. So, that will give you the drag coefficient, cd = 0.031, 

Re L - 1/7.  



So, all that analysis has given us that, how we can calculate the drag force in a turbulent boundary 

layer with an assumption that the turbulent boundary layer starts from the leading edge of the plate, 

in all the in the calculation of δ as well as in the calculation of Cf.  
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So, it has been suggested that, if one need to take into account that the boundary layer is laminar 

near the leading edge and the transition to turbulence at some distance, the drag coefficient an 

adjustment can be made in the drag coefficient and this formula has been given. Now, this is CD 

= 0.031/Re L 1/7, so the same formula which we just derived for the turbulent flow over a flat plate 

- 1/1440/Re L. And here, the assumption is that the transition starts at Reynolds number say this 

is Re x, at 5 × 105.  

Now, this 1440/Re L comes into, actually it should have been/Re L. So, this is basically, this 

number 1440 comes from that Re transition into CD for turbulent flow - CD for laminar flow at 

the transition Reynolds number. So, we can actually calculate them, we can substitute these values 

that Re transition is 5 × 105. The number comes out to be 1438 and so, it has been approximated 

to 1440. So, we could use that to take into account that in the initial length the flat plate has laminar 

boundary layer and then, it has turbulent boundary layer and the drag coefficient can be calculated 

using this.  
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So, what we have done today is, we looked at turbulent boundary layer. We discussed that in the 

turbulent boundary layer, it grows faster, it is thicker then you have different region viscous sub-

layer and the outer layer. The Universal log law of the wall that we talked about in the pipe flow 

is also valid for the turbulent boundary layers. And then, we used the momentum integral equation, 

to analyze the integral quantities for a turbulent boundary layer, over a flat plate with 0 pressure 

gradient.  

In doing that, what we did is because we needed wall shear stress in terms of δ or Cf in terms of δ 

and we needed momentum thickness in terms of δ. So, we assumed a logarithmic velocity profile, 

which is basically u + = 5 Ln y + 5 for which is valid near wall region. So, we used that velocity 

profile, calculated wall shear stress. And then, momentum thickness, for that we used power-law 

velocity profile and then, we also assumed that turbulent boundary layer starts from the leading 

edge and using all those assumptions, we derived like expressions for turbulent boundary layer 

thickness and Cf or the skin friction coefficient.  

Now, you might see in the books or there is another analysis where one could use the value of τ w 

with in analogue with the pipe flow and from the, which is in terms of the distance from the wall 

and so on. So, one could use that expression and one will end up with slightly different equations 

for δ/x and Cf. So, it is not important to remember these relationships, but it is important to see 

that how does this vary.  



And this, the turbulent boundary layer varies faster than the laminar boundary layer. And how do 

we do this analysis? The assumptions that we have made, the velocity profiles that we have 

assumed. So, consider this as a kind of a problem that, if you have a velocity profile given, how 

you can use the momentum integral equation to find out the integral quantities?  

So, we will stop here. Thank you. 


