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Boundary Layers 

In the previous module we talked about inviscid flows. Where we looked at inviscid flows, the 

irrotational flow. And, and then for an inviscid irrotational flow we we talked about the velocity 

potential and so on. And we also looked at Bernoulli’s equation. So, when the flow is inviscid 

it becomes easier because you can solve the equations governing the flow it becomes easier to 

analyse the flow mathematically.  

So, there has been a lot of development using potential flow finding out the solutions for 

different flow problems. However, there are some limitations for these inviscid flows and they 

cannot for example satisfy the no slip boundary condition on the wall they cannot predict the 

drag etcetera.  

In today's lecture we will look at boundary layer flows and in this module we will be looking 

at external flows in general. So, we will talk about boundary layers which coupled with a 

potential flow can be used to analyse the flow over plate, flow over spheres or any kind of flow 

problems they can be used to solve.  

And then we will look at the concept of drag and lift on different bodies which are useful for a 

number of chemical engineering applications or and as well as in biomedical applications. 

Because, in any flow we generally encounter there are objects submerged into it. So, what are 

the forces on such objects?  
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So, in the potential flow when you have a potential flow the boundary condition on the wall 

which is we specify that the boundary condition on the wall is no slip boundary condition that 

is not satisfied. For example, if you plot the velocity vectors surrounding this you might get 

vector something like this and the velocity is non-zero on the wall. So, that is one limitation 

because the no slip is something which has been observed experimentally.  

When you analyse potential flow say around a circular cylinder a cylinder which has a circular 

cross section so the stream lines are symmetric. And if you plot the pressure so if you plot the 

pressure that will be say Cp which is p - p∞ / ρ U∞
2. So, U ∞ refers to the velocity. The free 

stream velocity and p ∞ is the free stream pressure far away from the body so it might be in the 

pressure at ∞ where the effect of body is not there.  

And on x axis here so this has to be symmetric. So, and on x axis what we have is angle θ 

which is the angle along this direction. So, the pressure is symmetric and the potential flow 

because the flow is inviscid so the viscous drag is 0. And as a result, it can be shown that for a 

body which is moving with a constant velocity in an incompressible inviscid and potential flow 

the drag calculated on the body is 0.  

So, the drag can come because of two components it can come because of the pressure forces 

or because of the viscous forces. As the flow is inviscid so viscosity is assumed to be 0 or 

viscous terms in the Navier stokes equations they are neglected. So, there is no viscous tract.  

Now, as we can see here that the pressure on the two sides of the sphere on this side and that 

side is same. So, this is basically the angle π / 2 which where the Cp value is minimum and 



then angle π so the pressure has been plotted on either half you can say top half or bottom half 

in this image. So, the when the pressure on the left and right side or or the upstream and 

downstream side of the sphere is same so the pressure difference or the drag because of pressure 

will be 0.  

And this is not only true for a circular cylinder but any non-symmetric body also it can be 

shown that the drag on the body is 0. So, this is a paradox because when we look at or when 

we experience that any body which is moving in air it maybe it may be in water for example a 

car moving in air it experiences a drag. So, what we observe in our day-to-day life the the 

results shown here is counter intuitive or it is not predicted by the theoretical analysis.  

So, this is a paradox and this was observed or explained by D’Alembert. He, he said that he 

can he could prove mathematically that drag on an incompressible inviscid and potential flow 

or on a body is 0. But and this cannot explain the drag observed on the bodies experimentally 

or in our day to day life.  

So, there was lot of because when the theory could not prove the experimental observations or 

our common observations then the there was a lot of theoretical development but it was not 

being used for engineering calculations or for practical purposes. And the only thing people 

used for engineering calculations was empirical data. Now, somewhere around 1904 Ludwig 

Prandtl he introduced the concept of boundary layer and tried to explain this paradox.  
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So, we have earlier seen in the introductory lectures that what a boundary layer is. So, Prandtl 

suggested that even for inviscid flows or the flow that seem to be inviscid because the Reynolds 



number is very high their edge effect of viscous forces near the near the wall. So, if you consider 

flow over a flat plate here so this is the a flat plate and this is a solid wall so this plate is solid. 

And because there is no slip boundary condition here so in a small layer near the wall the 

viscous effects are supposed to be dominant.  

So, he suggested that one can assume or one can consider two layers in the flow the outer region 

where the flow is considered to be inviscid, potential flow. And the inner region which is 

boundary layer and where viscous effects are important. So, in the uniform flow if you have a 

uniform flow approaching a solid plate and you consider only inviscid flow then the flow will 

be uniform like this. But when we consider the a viscous layer near the wall then there are 

gradients present.  

So, he suggested that in this small or thin layer over the wall the gradients are large and the 

velocity approaches from 0 to almost 3 stream velocity. Though it may approach 

asymptotically but for all practical purposes you can assume that at a certain distance from the 

wall the velocity has approached the free stream velocity. So, the velocity gradients are large 

in the viscous flows or in the boundary layer flow where the flow is viscous. Whereas, in the 

potential flow in the outer region the velocity gradients are small and in the boundary layer 

viscous effects are important.  
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Now, as you can see that there are two different regions here the first one the boundary layer 

grows slowly and then it there is a sharp increase in boundary layer. So, as the thickness of 

boundary layer grows the flow becomes turbulent in the boundary layer. So, the flow near the 

what is called the this point is known as leading edge of this plate. And edge as the flow 



approaches away from the leading edge, the boundary layer grows and the flow is observed to 

be turbulent.  

So, the flow becomes turbulent when there are disturbances and these disturbances cannot be 

dissipated by the by viscous effects. And these disturbances to the flow they grow and the they 

become unstable and then there is a lot of randomness and chaotic behaviour in the flow. So, 

first the flow transitions so between laminar and fully turbulent flow you will have a transition 

happening. So, first it slowly transitions to a flow become say from laminar steady flow to it 

becomes unsteady in in the transition region. And then it further grows to become fully 

turbulent flow.  

Now, as you can see here that it happens after a certain distance. So, if we define a coordinate 

system let us say in 2D plane x y coordinate system where x is basically the coordinate 

following the wall and y is the coordinate normal to it. It may be a flat plate which we have 

shown in all the all the slides here but it can also be a curved plate. Then in that case the 

coordinate system will be such that that x is following the plate and y will be normal to it or 

orthogonal to it.  

So, it is observed that this transition occurs about a Reynolds number of 105. And this Reynolds 

number is defined in terms of Re x. So generally, when we define Reynolds number we take 

the transverse direction. When we talk about say flow over a sphere we define that Re = ρ U d 

/ μ where d is the diameter of the sphere. But, here what we are talking about when we define 

Reynolds number that = ρ U ∞ x /μ. So, x is this distance from the leading edge.  

Now, as we go away from the leading edge the Reynolds number grows. So, the Reynolds 

number at this point will be small and then it would have grown to a larger value here even 

higher values here and further higher values away. So, the experiments have shown that if the 

flow is smooth over a flat plate then the flow remains laminar until the Reynolds number is 105 

and then at higher values it*ts transitioning to a turbulence.  

Now, at about a Reynolds number of or a transition Reynolds number of 3 × 106 the flow 

becomes fully turbulent. But that is the case when we consider a smooth flat plate. However, 

when we consider or in general when we are looking at industrial flows or flow that we 

encounter in engineering it there might be a roughness on the surface and disturbances to the 

flow for several regions. There might be some acoustic noise or vibrations so all those factors 

may cause the earlier transition of the flow to turbulence.  



So in general, it is accepted or for calculation purposes it is assumed that the transition occurs 

or the flow is considered to be laminar below 5 × 105. So, you may see this range that between 

105 to 3 × 106, the flow edge say from transitioning from laminar to fully turbulent. So, 

somewhere in between because it is not easy to predict transition flows so what people 

suggested that somewhere in between we take a number and below which the flow is 

considered to be laminar and above which flow is considered to be turbulent.  

So, while these are not very hard numbers or they are not that the flow is supposed to behave 

but they act as a useful guide. So, we can consider that Reynolds number 5 × 105 is the number 

below which we when we can consider the flow over a flat plate to be laminar.  
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Now, so we have considered the flow over a flat plate and as we can see that as we move along 

the plate the boundary layer grows. And this boundary layer let us represent the thickness of 

the boundary layer as δ. And this δ is is a function of x so δ at different places will be different.  

Now, one of the things of course we will be interested in to find out what is the thickness of 

this boundary layer. Because, the goal of boundary layer analysis was that we can solve 

potential flow in the in the outer region here and we can solve the viscous flows in the boundary 

layer. We can use some approximations and simplify the Navier stokes equations. So, we will 

need the thickness as well as the conditions at the region between inner and outer regions. So, 

we need to identify the thickness of boundary layers.  

Now, one thing we should also see here that the boundary layer what we have drawn it is not a 

stream line. So, if we plot the flow stream line they may well one of the effect will be that as 



the flow while the stream lines if the flow is uniform the distance between stream lines will be 

same.  

When it approaches the plate but when there is a flow over a flat plate and there is a boundary 

layer because of the presence of boundary layer these stream lines the distance between the 

stream lines may change. So, the distance between the stream lines can be slightly more as as 

it go downstream. So, the stream lines can cut the boundary layer and boundary layer is not a 

stream line here.  

Now, there can be different ways to define a boundary layer thickness so the simplest way to 

assume it as I said earlier that the velocity will approach to U ∞ exactly only at ∞. Because, it 

changes asymptotically. So, we can assume that the boundary layer thickness is the thickness 

at which the velocity becomes 99 percent of free stream velocity. Now, we can also find out or 

using a simple analysis at least for a laminar flows by considering the importance of inertial 

and viscous forces.  

Because, in the boundary layer the viscous forces are important and you know because the flow 

Reynolds number is high the inertial forces are also important. So, by considering the 

equilibrium of 2 we can develop a order of magnitude analysis or we can do an order of 

magnitude analysis to find out this δ.  

So, the inertial term let us say ρ u ∂ u / ∂ x we can write this in terms of ρ and u we can scale 

as U ∞. So, because U ∞ is the velocity at the end of boundary layer or at the end of interface 

between boundary layer and the interface region in in and the outer region. So, ρ U ∞
2d / x so 

x is the distance at any distance from the leading edge and the viscous force forces μ∂2 U / ∂ y2 

we can write this as μU as again U ∞ and y edge we can take a length scale equal to the boundary 

layer thickness this edge also called disturbance thickness.  

So, U ∞ / δ2d. Now, we can simplify this so we will get δ 2d =μx / ρ U ∞. And we can multiply 

and divide by x so this becomes Rex
-1. So basically, we can write that as δ2 / x2 =μ/ ρ U ∞ x 

which is 1 / Re x. And that gives us the δ / x or non-dimensional boundary layer is 1 / √ of Re 

x.  

So, that also shows that from here we can see that δ is proportional to √ of x. So, that means as 

we go away from the leading edge the boundary layer in the laminar region grows as x 1/2 and 

this is valid for the laminar region. Because, we are considering the viscous forces in the 

laminar region this expression is not valid for a turbulent boundary layers.  



And the exact solution for boundary layer was derived by Blasius and the expression that he 

got was δ / x = 4.91 × 1 / √Re x or this 4.91 generally is taken as 5. So, δ y x = 5 / √ Re x. So, 

we could found or we could find the dependence of δ/x / Re x with simple order of magnitude 

analysis and now we also know that what is the constant between this. So, for a laminar flow δ 

/ x = 5 / √ Re x.  

Now, that is one way of representing the thickness or the boundary layer thickness. The another 

way is what is called displacement thickness.  
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So, displacement thickness because when we have a flow in boundary layer there is a certain 

gradient in velocity. So, that means the flow that was coming parallel to the wall here it has to 

turned away. The flow is has to be turned away slightly away from the wall so that it can move 

into there are gradients in the boundary layers can be established. So, as I said earlier that the 

stream lines will be moving slightly away from the wall.  

Now, that also causes a mass deficit so if you consider that the flow is coming with the uniform 

velocity U ∞ then you could have simply said that the mass flow rate is ρ × U ∞ × the cross 

sectional area so you can take say integrate from y from 0 to say ∞ and multiplied by the width 

of the plate say b which is normal to the screen.  

But, because of the presence of boundary layer this is not so the there is certain loss in mass 

because of the presence of boundary layer. So, you can see here that this velocity vector 

represents the magnitude of U and we have this distance moving as y so u dy this area under 



this area is where what is causing a loss of loss in mass. So, if we can quantify this loss in mass 

in terms of thickness that is what is done in terms of δ* which we call displacement thickness.  

So, displacement thickness is basically that if we assume that the flow is uniform and what we 

have done is that we have moved the plate by a certain distance and that certain distance is δ* 

so that the flow everywhere is having a velocity U ∞. So, you can consider that in place of a 

presence of a boundary layer the plate has become thicker and by what magnitude is δ*.  

So, we can do a simple analysis that reduction in mass flow will be the mass flow rate would 

have been if there is no boundary layer would have been ρ × U ∞ × b dy integrated from 0 to ∞. 

But, because we have a boundary layer, this will be ρ u b dy so the difference between the two 

will be integral 0 to ∞ ρ within bracket U ∞ - u b dy. And we know that above boundary layer u 

= U ∞ so this value will become 0 above say boundary layer thickness δ, b here is the plate 

width normal to the wall.  

Now, we can equate this because we have said that the thickness by which we this mass flow 

rate can become taken into account by considering a thickness. So, if we consider that the flow 

is ρ U ∞ b δ so that will be equal to this mass deficit and ρ and b if the flow is considered to be 

incompressible they will cancel out. And we will get for an incompressible flow δ* or 

displacement thickness = 0 to ∞ within bracket 1 - u / U ∞ dy.  

Now, between δ to ∞ u = U ∞ so or we can approximate u = U ∞ so this term becomes 0. So, we 

can simplify this or approximate it the δ* = integral 0 to δ where δ is the disturbance thickness 

or the boundary layer thickness the integration of 1 - u / U ∞ with respect to dy or with respect 

to y from 0 to δ. So, that is displacement thickness.  
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We can look a simple example here that how this can be useful in calculations. So, here a we 

consider a wind tunnel and the diameter of the wind tunnel and length is given. So, that means 

wind tunnel is a cylindrical kind of tunnel in this case and the diameter here is 20 centimetre 

and the length of this tunnel is also 20 centimetres.  

Now, the air approaches this flow it approaches with say uniform velocity we have been given 

ρ and μ of air and the velocity here U ∞ you can say is given as 4 meters per second. And then 

we need to find that what would be the central line air speed by the end of internal. So, when 

the flow approaches this wind tunnel on the walls of this wind tunnel the boundary layer will 

grow from all sides.  

So, if you look at a cross section this will be your cross section at entry and if you take a typical 

region or away from the in T section you will have a region where there is boundary layer in 

the flow. And the boundary layer will keep growing. So, first thing we can look into it that if 

the flow is laminar, if the flow is laminar, then we can use some concepts from that we have 

just learnt. So, we can first calculate the Reynolds number of the flow.  

Now, the Reynolds number Re x is defined ρ x U ∞ /μ and the Reynolds number will be highest 

at the end of tunnel. So, we can calculate Re L and if we calculate Re L which = ρ is 1.2 × L is 

20 centimetres so 0.2 meters × U ∞ which is 4 meters per second / 1.52 × 10-5. And that number 

will probably come around 63000. And if we remember that Reynolds number less than 5 105 

we can consider flow to be laminar.  

So, it has also been suggested that we can consider that wind tunnel is free from any 

disturbances. So, if the flow is smooth then the flow is going to remain laminar in the wind 



tunnel. Now, the question is that when there is a boundary layer the area available for the 

uniform flow will keep decreasing as we go away from entry to the exit of this tunnel. And 

how this can be calculated easily is using displacement thickness because if we consider 

displacement thickness which again will be a function of x.  

So, if we know the displacement formula and we have been given the formula for displacement 

thickness we could actually obtain it using the formula of δ which is for a laminar case δ / x = 

5 / √ Re x and if we could substitute in the formula that we just write for displacement thickness 

we could obtain it. But, we have been given it directly so we could not use it here.  

Now, we need to calculate that what is the centre line airspeed at the end of a tunnel. So, if we 

can calculate that what is the displacement thickness at the end of tunnel and from that we can 

calculate what is the area available for flow. Let us say this is area for uniform flow or or say 

potential flow in this outer region. Then we can calculate from mass balance that what is the 

how by how much the flow will be accelerated.  

Now, we can calculate the displacement thickness and the displacement thickness δ* at L will 

be equal to 1.72 × L / √ Re L. So, we can substitute 1.72 × L is 0.2 √ of Re L which is 63158 

and it comes out to be 0.00137 meter or 1.37 mm. So, you can compare or you in terms of 

number you can see here that this value is 1.37 mm which is displacement thickness. And if 

you look at this formula boundary layer is about thrice of it 5 / 5x / √ Re x.  

So, boundary layer will be 3 times of it. So, in in this flow where the diameter is 20 centimetre 

and the length where the plate plate length is about 20 centimetres the boundary layer has 

grown by a thickness of 1.37 × 3. So, 4 1.4 × 3 about 4.2 mm. Now, we can calculate what is 

the area at the end of the wind tunnel and use A1 V1 = A2 V2 to find the velocity at the of at 

the end of wind tunnel.  

So, that will be V × π D 2d which is A1 V1 which is the mass not the mass but volumetric flow 

rate at the entry. So, V which is 4 meters per second × π D 2d / π D - 2 δ 2d. So, if we consider 

that the flow is uniform but it the wall has become thicker by a distance D - 2 δ is the diameter 

as we move away from the from the entry in the wind tunnel or is move in the wind tunnel.  

So, when we substitute the numbers we can write this D is 20 because these numbers are to be 

cancelled out so I have written these in terms of centimetres itself so this is 20 centimetres and 

δ will be 0.137. But, you will have δ* and δ* so this will be 2 δ* so 0.137 centimetre × 2.274. 

So, when you solve it the velocity comes out to be 4.11 meters per second. So, that will be the 



velocity at the center line at the end of wind tunnel. So, this is a simple example where we see 

that how the displacement thickness can be useful.  

(Refer Slide Time: 38:07) 

 

Now, along the same lines there is another thickness that is defined which is called momentum 

thickness. So, as we discussed that displacement thickness is the thickness by which or the 

distance by which the plate need to be moved up so that the momentum deficit because of the 

presence of boundary layer is taken into account and the flow above is uniform.  

Here, what we consider that it is momentum deficit which is taken into account and the 

thickness or the distance by which the plate needs to be moved up so that the momentum deficit 

because of the presence of boundary layer is is taken into account the reduction in momentum 

is taken into account. So, again a similar schematic picture. Now, if there would have been no 

boundary layer us then the flow in this case would have been U ∞ × ρ × Q. So, this Q boundary 

layer it just refers to the flow in this region the flow we consider here is this.  

So, basically ρ Q BL is the mass flow in this entire region from 0 to ∞ ρ u b dy. So, the thing to 

consider here is or thing to note here is that it is not ρ U ∞ b dy we have considered the mass 

flow assuming that there is a boundary layer. So, the actual flow that is there over the plate is 

being taken into account actual mass flow so that is integral 0 to ∞ ρ u b dy.  

Now, if all this mass has been moving with a velocity U ∞ that is the momentum flow without 

boundary layer. We can also substitute this ρ Q BL by this value so we can write U ∞ as a 

constant so this will be integral 0 to ∞ ρ U ∞ u b dy. Now, if we consider boundary layer then 

in place of U ∞ what we will have is u.  



So, this will be ρ u2d b dy that will be the momentum flow considering boundary layer. And 

the defect momentum deficit or what is called momentum defect will be difference of these 

two. So, integral 0 to ∞ ρ u U ∞ - u × b dy so that is the momentum defect.  
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Now, we can equate this momentum defect by considering a thickness θ by which the plate 

needs to be move and this will be equal to θ into because when we will consider this if the flow 

is moving with the velocity U ∞. So, ρ U ∞ 2d × b × θ and we can cancel out the terms such as 

ρ and b. So, this gives us θ = integral 0 to ∞ u / U ∞ × 1 - u / U ∞ dy.  

And above this boundary layer when we have a boundary layer beyond boundary layer in the 

outer region u = U ∞ so we can again consider that θ = integral 0 to δ u / U ∞ 1 - u / U ∞ dy. So, 

momentum thickness is basically the distance by which the plate needs to be moved up so that 

the momentum deficit is taken into account or reduction in the momentum deficit is taken into 

account.  

The important point to note in this is that we consider when we consider this mass flow it is 

not ρ U ∞ 2d b dy. It is ρ U ∞ u b dy and this considers the actual mass flow that is there in the 

boundary layer it is only that this mass flow if it would have been moving with a velocity U ∞.  
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Now, we will see that we write down the Navier stokes equation considering a two-dimensional 

flow over a flat plate we have considered here a flat plate and the flow is laminar. So, these 

equations what we are going to write new stokes equations they will be valid for a laminar 

flow.  

However, the plate we have considered flat here but it may well be a slightly curved plate and 

in that case our coordinate system will be that the x coordinate is along it and y coordinate is 

normal to it. And these equations will be valid until our radius of curvature of this curve curved 

plate is significantly higher than δ which is the boundary layer thickness.  

So, we can write down the usual continuity equation which is for an incompressible flow ∇.V= 

0 x momentum and y momentum equations.  
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Now, as we saw that the boundary layer thickness is proportional to 1 / √ Re x. So, when the 

Reynolds number is high then the boundary layer is very thin. That means the y-coordinate is 

very small compared to the flow along the x direction. So, we can use this approximation and 

using this approximation we can so like we did for the lubrication approximation.  

That the flow will be nearly unidirectional from continuity equation we can show that v is very 

very small when you compare it with u. And using y momentum equation it can be shown that 

all the terms in the y momentum equation are of the magnitude δ / L or less than it or δ / x and 

less than it.  

So, δ ∂ p / ∂ y is negligible so that means that p is not a function of y so p is a function of x 

only. So, in place of ∂ p / ∂ x in the x momentum equation we can write dp / dx. The other thing 

to note here is that ∂ 2 u / ∂ x 2 is is significantly less than ∂ 2 u / ∂ y 2.  

So, in the viscous term both the second derivative they they come in the viscous terms. So, the 

gradient or the ∂ 2 u / ∂ x 2 the gradients or the viscous term caused by this ∂ 2 u / ∂ x 2 is 

significantly less than ∂ 2 u / ∂ y 2. So, gradients in this direction in the y direction is 

significantly large than in these direction along the x direction this is, sorry, this should have 

been x and this is y.  
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Again, we have the same mistake here so let us just correct it. Now, when we use these 

simplifications our equations become ∂ u / ∂ x plus ∂ y ∂ v / ∂ y = 0. So, continuity equation as 

it is the y momentum equation will reduce to ∂ p / ∂ y = 0. And as a result we can write this dp 

/ dx = 0. You might notice that we have only one term in the viscous term because we could 



neglect ∂ 2 u / ∂ x 2 with respect to ∂ 2 u / ∂ y 2 and all this can be shown using order of 

magnitude analysis like we did for the lubrication approximation.  

Now, so we see here that ∂ p / ∂ y = 0. So, that means that if we take a cross section at any 

section in in the boundary layer the pressure along y is constant at or same at each point. So, 

the pressure in the outer region is same as the pressure in the boundary layer. So, if we could 

solve the flow in the outer region then that pressure field that we obtained from the outer region 

that can be directly used for in this equation. So, the pressure field can be obtained from the 

flow solution for the outer region.  

Now, we will have unknowns in this u and v because we can obtain pressure from the outer 

region. And so for these two unknowns and this equation basically is reduced we do not need 

it anymore because we have used it as dp / dx. So, we will have two equations and two 

unknowns in terms of u and v. And we will need the boundary conditions so the boundary 

condition at y = 0 u = v = 0. So, y = 0 is basically the wall so because of no slip boundary 

condition here the u and v component of velocity both of them are 0.  

And at y = δ x so when we consider any x at the boundary layer or at y = δ x which is the 

interface between outer region and boundary layer u = U ∞ x. So, now we need what is U ∞ x? 

U ∞ x is the velocity in the outer region. So, this could again be obtained by potential flow 

solving in the outer region. So, p ∞ x or and U ∞ x can be used to obtain the solution of boundary 

layer flow and this way we can also couple the two solutions.  
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And if we can use Bernoulli’s equation for a flat for the case of a flat plate so we can write this 

as for a horizontal flow where z is not changing. We can use Bernoulli’s equation to write p 

plus 1/2ρ U ∞ 2d which is constant from Bernoulli. So, we can differentiate it with respect to x 

this will give us dp / dx plus 1/2 ρ to U ∞ × dU ∞ / ∂ dU ∞ / dx.  

And 2 and 2 will cancel out so you will have this formula. Now, we can substitute dp / dx = - 

ρ U ∞ dU ∞ / dx so we can do that and this will become our simplified equation. And now this 

along with continuity equation we can use to find the solution in the flow in boundary layers.  
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Now, with the lot of development in CFD and advances in computational power the use of 

boundary layer solutions or the use of the technique that one can decompose the flow in outer 

potential flow and the inner boundary layer flow has become limited. But, the technique gives 

us lot of physical insight in the flow we can see that if my solution is able to capture the flow 

over the boundary layer plus it can also help us in some quick calculations from back of the 

envelope calculations.  

So, what we have studied in today's class is we looked at what is boundary layer and how it is 

important to explain sub some phenomena for example the absence of no slip boundary 

condition or or D’Alembert’s numbers paradox when we just take boundary layer flow into 

account along with the outer potential flow.  

We also looked at different ways to represent or estimate the thickness of boundary layers. So, 

disturbance thickness which was simply that at the distance at which u becomes U ∞, then 

displacement thickness which = when we take into account the mass deficit and momentum 

thickness when we take into account or by which the distance by which the plate can be moved 

to take into account the reduction in momentum defect or momentum deficit.  

We also looked at the simplified Navier stokes equations that how we can simplify two 

dimensional Navier stokes equations in cardiac cartesian coordinates to find the solution for 

boundary layer flow. Blasius, he obtained the solution of these equations exact solution and 

from that he could calculate the value of δ which we saw earlier in the lecture that δ / x = 5 / 

√Re x or 4.91 to be exact / √Re x. So, we will stop here, thank you. 


