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Lubrication Approximation 

Up until now we have been looking at different solutions of Navier-Stokes equation where the 

flow was fully developed. When the flow was fully developed then we saw that the flow was one 

dimensional that means only one velocity component is non-zero all the other velocity components 

it might be in the cylindrical coordinates, or it might be in the Cartesian coordinates.   

All other velocity components were zero, only one component was non-zero, so the flow was one 

dimensional. And this was achieved because we assumed that the flow is fully developed, so that 

there is the gradient along the x direction ∂ v/∂ x =0 sorry ∂ u/∂ x predominantly 0, because other 

velocity components we were able to achieve to be zero. 

So, that way the nonlinear term in the Navier-Stokes equation where we had u ∂ u/∂ x or v ∂ u/∂ x 

such terms where we have multiplication of velocities which are non-linear terms, so such terms 

were neglected or they went to 0 and we were able to convert these partial differential equations × 

ordinary differential equations and which are more importantly in the ordinary differential 

equations and we could solve them analytically.  

By solving them analytically, I mean that we could integrate them easily. Now we are going to 

look at a case where the flow is not necessarily one dimensional. We have a second component of 

velocity which is non-zero, but this component of velocity as we will see is very when you compare 

with the other component of velocity.  

So, we will consider two-dimensional flows and in such two-dimensional flows you will see that 

if the flow is happening predominantly along the x direction that there is some y component of 

velocity, but that component of velocity, y component of velocity is very as compared to the main 

component of velocity, which is u, so v/u will be very, very less than 1. 

And this is called lubrication approximation, so the lubrication approximation as the name 

suggests, it came because the first use of this approximation was done to solve problems in ball 

bearings where the lubrication etcetera come × picture. So, that is where the name came from. But 



the approximation is very useful in a number of problems, in biological flows as well as in thin fin 

flows etcetera.  
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So, let us look at this. So, we will look at this lubrication approximation because we are looking 

at flow which is two-dimensional, so it can be two-dimensional flow and it can be in Cartesian 

coordinate, then we call it a planar, so then in that case it will be xy coordinate and axisymmetric, 

so in the axisymmetric case we will have a flow to be in r and x coordinates. 

And it can be characterized that the flow is nearly unidirectional, so there is some other component 

of velocity, but that will be very low and we will see that with this is applicable we will be able to 

use this approximation only when we can neglect the inertia that means the Reynolds number, 

which is ratio of inertia or inertial forces /viscous forces.  

So, when Reynolds number is low and inertia is negligible, that is also a condition for lubrication 

flow and a corollary of this is that flow is nearly unidirectional which means that one component 

of velocity is significantly smaller than the other, so let us say, if the flow is happening in the x 

direction predominantly than the y component of velocity v is significantly smaller than u. And as 

I said the flow is, or you will find such application of lubrication approximation in flow in thin 

films or flow narrow channels etcetera. 
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So, we will take up a example where we consider a two-dimensional flow in x and y coordinates, 

so a there are two walls which are not parallel to each other. So, this gap you can see that the 

distance between the two walls here is a function of axial coordinate or not the axial coordinate 

but the x coordinate, which is the direction in which the flow is happening and you can say that 

the flow rate here is Q, that has been given. 

The width of these walls normal to the screen is b, and we will not consider gravity to make our 

life simple here and as you can see that these lines, they are slightly tapered. It is in this case the 



flow is say these walls are converging, but you may as well have the flow between the walls which 

are slightly diverging and approximation will be valid there also.  

So, as we have been doing earlier, what we will do, we will start with the governing equations 

which are mass and momentum conservation equations or continuity and Navier-Stokes equations. 

And then we will obtain the velocity and pressure distribution. We will also assume here that the 

Reynolds number is low.  

So, we will start with the writing down the governing equations for a two-dimensional flow in 

Cartesian coordinate and we will assume that the flow is incompressible. So, we will start with 

writing governing equations when it is two-dimensional flow and flow incompressible then our 

continuity equation will simply reduce to ∂ u/∂ x, + ∂ v/∂ y =0.  

The x momentum equation, because the flow steady, so this term can be removed and we will 

neglect gravity so this term can also be removed and I have already removed the terms which 

contained w or ∂/∂ z. So, this is, with these terms removed, we will have our x momentum 

conservation equation and then similarly y momentum conservation equation. The unsteady term 

is neglected and the gravity term also can be removed. 
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Now what we will do is, we will do an order of magnitude analysis. So, by looking at the relevant 

scales, in terms of length scale or in terms of velocity scales for the corresponding variables, we 



will try to find out the relative magnitude of different terms and then we will try to neglect the 

terms which are negligible with respect to other terms. So, we will start with the continuity 

equations.  

So, we can assume that the velocity along the x direction, the flow rate is Q and Q/bh, you can say 

that that =velocity U. Now remember here that this h is varying slightly along the x direction, so 

h is a function of x and the distance between say inlet and outlet of this channel is L, so the length 

of this channel is L, and we can assume the length scale along the x direction is L and along the y 

direction is h. 

We will also assume that this narrow gap, so h is less than L, that is one of the conditions, because 

the flow is narrow, so the flow is in, sorry, not because the width of the channel is significantly 

smaller than the length, so h is very, very less than L here, that is what we are going to consider. 

Now, we will also consider that let us assume that the y component of velocity is the order of y 

component of velocity is V.  

So, with these assumptions we can write down this term, magnitude of this term, ∂ u/∂ x, so this 

we can write ∂ u as U, and ∂ x, we can write as L, so ∂ u/∂ x we can say that its magnitude is of 

the order of U/L, and the magnitude of ∂ v/∂ y term, we have assumed that v or y component of 

velocity is it can be scaled as or it can be of the order of V and the distance along the y direction 

we can take as, h, which is the distance between the two plates. 

Now, we know U which is average velocity and h and L are the geometric dimensions, but we 

don't really know what is U, so do not really know what is V, so we can see that V =Uh/L. And 

we have assumed here that h is very, very less than L, so that means from here we can see that V 

will be very, very less than U and so from this we can say that h if an h is less, less than L then V 

is very, very less than U. 

So, with the assumption that the one dimension of our system which is h, the transverse direction 

is significantly smaller than the other dimensions which is the direction along which the flow is 

happening, then we can say here that the component of velocity V will be less than the component 

of velocity U. So, this is the first thing that we obtain from our approximation, so we can now say 



that h/L is less than 1 and V/U is also less than 1 and we can also say that h/L and V/U, they are 

of same order. 
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So, this is what we learned from the continuity equation, let us is now look at the momentum 

equation. So, we write down the momentum equation without unsteady and gravity term which we 

neglected. Now the first term if we look at, the first term will be of the order of ρ, for u, we can 

write U here and a for another u, so it will become U2. And for x we will have L, so the first term, 

the order of first term is ρ U2 / L. 

The second term we have a ρ here, for v we will use V and there is another u, so U and for y we 

will have h. So, ρ VU/h, then let us say the pressure is of the order of ∆ p and for ∆ x we will have 

L, so ∆ p/L here and this term will be μ, U/L2, so for u and for x we have L and x is2, so L2, so μ 

U/L2 and next term will be μ U/y2, so we will h2. 

Now we can try to divide each term, μ U/h2, because of this is a thin film and we will have a 

viscous term dominating here. So, we will see that how other terms compare with the viscous term 

where we are considering the gradient along the y direction. So, if we divide the first time by μ 

U/h2, or we multiply by h2/μ U, then then this term we will get from the first term we will get ρU 

/ μ × h/L. 



The next term we will get ρ × V × h / μ U and U will cancel out. The next term will have ∆ p/L 

multiplied h2 / μ U, and then μ U will cancel out here, so h2/L2 and this term will be 1. Now if you 

look at this term, we see that h/L is less than 1, and among the two viscous terms here, so we can 

see by looking at just this itself that ∂ 2u/∂ x2 is significantly less than ∂ 2u/∂ y2.  

So, among the two viscous terms only ∂ 2u/∂ y2 term will be significant. We can replace this 

V/Uh/L here, and we can also define the Reynolds number for the flow here. So, h ρ U/μ, which 

is where we use h as the characteristic length scale and U as the characteristic velocity scale, so 

we can see that the first term in the inertial term is Re h/L and second term also will come out to 

be Re h/L.  

So, we can see that both the inertia terms are of the same order, ρ U ∂ u/∂ x, ρ V ∂ u/∂ y, then we 

have a pressure term and two viscous terms. 
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So, these are the relative magnitudes, now we can see here that we can neglect this term when we 

compared with this, now h/L is and Reynolds number is also small, so we can say that Re h/L is 

significantly less than 1, so one another assumption we assume, we have assumed here before that 

h/L is less than 1. 

Another assumption we are going to make here that Re × h/L is less than 1, so when we do that 

then we can neglect these two terms with respect to 1, so these two terms are also negligible. So, 



this means because this is the inertial term, this is the fluid inertia. So, we can neglect the inertial 

terms with the assumption that Re × h/L is less than 1. 

Now we are then left with two terms, pressure gradient term and one viscous term. So, this simply 

says, if you remember the same equation, this is the same equation that we obtained for flow 

between two parallel plates. Now here what we have, we still have that the flow is two-

dimensional, so there is some v component of velocity here and p ∂ p/∂ x, now we need to see that 

there we had the pressure gradient was independent of other component.  

So, ∂ p/∂ y was 0 and we need to see and assess here what happens to a ∂ p/∂ y or is pressure 

dependent on y or not. But this term suggests that the pressure gradient, because this is a pressure 

driven flow, the flow is driven by a pressure gradient and it is balancing. So, the pressure gradient 

which is the energy that is being lost because of the viscous losses, pressure gradient is providing 

the energy to overcome those losses. 

So, it is the balance of pressure gradient and the viscous forces that will come × picture here and 

these two terms will be of the same order. That means of ∆ p h2 /μ U L and 1, so you can see that 

this term or you can say that this term is also of the order of 1. 
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Now let us look at y momentum equation, so in the y momentum equation, the first term we can 

write ρ U V/L. The next term we can write ρ V × V, so V2 /h. Then the next term we can simply 



write ∆ p/h μ × V/L2 and μ × V/h2. So, then again we can divide these terms by μ U/h2 and see that 

how these terms compare with the viscous terms here. 

So, we have the first term, ρ × h2 /μ U, U will cancel out and V so ρ h2 V /μ L, then the next we 

will have ρ × h, one h cancel out × V2 /μ U. Next term ∆ p/h, multiplied by h2/μ U, so one h will 

cancel out and you will have ∆ p h/μ U, and the next term will be μ, μ will cancel out, so we will 

have V/U × h2/L2. 

And the last term μ, U, μ will cancel out and h2 will cancel out, so we will have a V/U, so we can 

see here, we can replace V with the Uh/L, so when you do it in the first term so you will get ρ h, 

U/μ × h2/L2. In the second term, so you will get ρ as U/μ × h2/L2. Then the next term, ∆ p h/μ U, it 

remains same, because there is no V here, V/U we can replace by h/L, so h3/L3 and similarly h/L 

here. 
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Now, so we can write this as Reynolds number =ρ h U/μ, so the first term will be Re h2/L2. Next 

term, Re h2/L2 and we have pressure gradient term and h3/L3 and h/L. So, we can see here that this 

term is negligible with respect to this term, h3/L3 will be significantly smaller than h/L.  

Similarly, the inertial terms Re h2/L2 and Re h2/L2, they will be significantly less, then so these 

terms can be negligible. Now we will again have ∂ p/∂ y and μ ∂ 2v/∂ y2. These terms which 



balance each other because other terms are neglected. But let us see, because remember that the 

viscous term in the x momentum equation was of the order of 1. 

So, we will just compare the pressure gradient terms and we can see that the pressure gradient, the 

y, ∂ p/∂ y and ∂ p/∂ x, when we the compare these two terms, so ∂ p/∂ y, because the pressure 

gradient in both the cases we can say that the pressure gradient is of the order of this viscous term. 

So, we can say that μ V/h2 and μ U/h2 and that will be V/U, which is h/L and less than 1.  

So, that means that this term here, they are very or the pressure gradient is negligible. So, from 

here we can say when you compare the ∂ p/∂ y, it is compared to ∂ p/∂ x, so it is quantity and we 

can say that ∂ p/∂ y is negligible which will give us that p is constant with respect to y. So, that 

means the pressure does not vary in the transverse direction. 
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Now, we can a integrate this equation, which is the simplified x momentum equation, we can write 

because we found it is two-dimensional flow and we saw that p is independent of y, so we can 

write this μ ∂ 2u/∂ y2 =dp/dx and we can integrate, so when we integrate first time we will get ∂ 

u/∂ y =1/μ or dp/dx × y + constant of integration and another integration and we will get 1/μ dp/dx 

y2/2 + c1 y + c2, and now our task is to find these two boundary conditions. 

So, for the boundary condition of the tangential velocity at the two walls which is let us say our 

origin is here at the axis, so the top wall or at any place, the top wall is y is h/2 and bottom wall 

we can say y =- h/2. Now at the walls when you talk about tangential velocity there will be some 

u and v components, but both the components will be 0 because the tangential velocity is 0, you 

can resolve it you can take its components as well as the velocity normal to it because this is non-

porous walls. 

So, velocity normal to it is also 0, so you can take that the u component of velocity is 0 at y =+ 

h/2, y =- h/2 and from that we can find the constants c1 and c2. So, c1 will be 0 and we can find 

c2 which will be equal to, c2 =- 1/μ dp/dx × h/22 /2, so once we replace the constant c2 by its value, 

then you will get the velocity profile.  

Once you get the velocity profile, we can find the flow rate Q =integral - h/2 to h/2, u × bdy, where 

b is the plate with normal to the screen. And after the integration, we will get the flow rate which 



=- bh3/12 μ × dp/dx. So, we can replace or we can find out dp/dx from here, because we can replace 

this and Q is known quantity, so we can write velocity profile in terms of Q.  

So, u will be 3/2 Q/bh and 1 - y2 /h/22. So, remember here that Q is a constant plate with b or wall 

with b, normal to the skin is also constant, y of course is the coordinate in the transverse direction 

and h is the plate width at any place, so h is a function of x here. So, we have obtained u component 

of velocity. 
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Now there is some component of velocity v also which is the velocity along the y direction. So, 

using the continuity equation here we can find out the y component of velocity, so we can write 

this equation and rearrange so ∂ v/∂ y =- ∂ u/∂ x and we can integrate from 0 to y ∂ y, so y is 

nothing but a dummy variable so that we can differentiate between the limit y and the variable y 

inside the integral sign. 

And we have obtained this u =3/2 Q/bh, 1 - y2 /h/22. Now we can evaluate du/dx, so here Q/b is 

constant with respect to x, but h is a function of x, so we can evaluate this du/dx and it will come 

out to be 3/2, Q/b, dh/dx - 1/h2 + 12 y2/h2, I request you to verify it for yourself and see that if there 

is any mistake in the calculations. 

So, once you obtain du/dx, you can replace it here and we can obtain v by integrating it from 0 to 

y, so we can replace and then do the integral, so once the integral is done you will be able to obtain 



v. So, that is v component or y component of velocity obtained, now we have obtained u 

component and v component for the velocity field. So, we have obtained the velocity distribution. 

And next is to obtain the pressure distribution. 
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We have already obtained pressure gradient in terms of flow rate or flow rate in terms of pressure 

gradient, we can rearrange it to write dp =- 12Qμ /bh3 dx and h is a function of x, so we can to find 

dp we can integrate pressure so we can say that if the pressure at x =0, so p0 is pressure at x =0 

and we can integrate it from 0 to x, so at a distance x, remember that pressure does not vary along 

the transverse direction or that variation is negligible, so we can write 12μ Q /bh3 dx‘. 

So, we will get p, x - p0 =- 12Qμ /b integral 0 to x, dx’/h3. And if we know that how does h vary 

with x, we can replace here and find the variation of pressure with respect to x, all of these are 

constant. 
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So, in summary, if we look at what we have done is we have looked that a flow where the flow is 

two-dimensional, but the one component of velocity is significantly smaller than the other. So, by 

making some assumptions, we have been able to identify or we have been able to find the velocity 

and pressure field, because once we have obtained the conservation equations then our goal to 

solve different problems is to find the solution of these system of equations and we will try to find 

that if such an approximation can fit × some particular solution. 

For example, we can use this for flow in thin films, flow between two narrow channels or flow 

between even two circular cylinders, we can try to use such approximations, say there is a flow 

between so flow in a channel where the wall is porous, even though the walls are parallel to each 

other then there will be a y component of velocity and the same there we will not have h/L less 

than 0, but we can see if there is not the flow from the walls is lesser than the main flow, then we 

can also use or we will be able to find that v is less than u, or we can also use this approximation 

to solve the problems of flow on a porous wall. 

So, this is a useful technique to solve different problems in a number of applications. So, 

lubrication approximation is applicable for systems typically which are long and narrow that means 

we can say h/L where h is the narrow dimension and L is the longer dimension. So, that is one 

approximation that we need to use and the Reynolds number is low. 



So, low Reynolds number we can have, but the ultimate condition which we will need to see are 

based on which we have neglected the inertial term is that Re × h/L such terms should be 

negligible. That is what our limit for Reynolds number is, so if h/L is very small, let us say of the 

order of 10-3 10-4 then we can use such approximation for Reynolds number of 100 or so. 

Then as we have seen the flow is near unidirectional that means the v component of velocity is 

very, very less than u, and we saw that ∂ p/∂ y which is the pressure gradient in the transverse 

direction, that was significantly less than ∂ p/∂ x, so we neglected it. We also saw here that ∂ 2v/∂ 

x2 was significantly less than, ∂2, sorry we should say, actually it is valid for both the velocity 

components, but it is more relevant for u.  

So, I will just write u here, so ∂ 2u/∂ x2 is significantly smaller than ∂ 2u/∂ y2 and all of these 

things are the components that we need to remember to find some of these things, we start as an 

assumption and some of those results we find when we apply those assumptions. So, we assumed 

here that h/L is less than 1 and from that we got V is less than U and then we could neglect the 

inertial terms when we saw order of magnitude that Re h/L is less than 1, so we can neglect or we 

could neglect the initial terms.  

We could neglect one of the viscous terms by this that ∂ 2u/∂ x2 is less than ∂ 2u/∂ y2 and we 

could also, when we compare ∂ p/∂ y and ∂ p/∂ x, we saw that their ratio is of h/L, so we could say 

that ∂ p/∂ y is negligible. What we also learned in this lecture is the order of magnitude analysis.  

So, when it is not possible to do everything analytically by using some common sense and by 

making approximations and finding out the relative magnitude of different terms in the equation, 

we will be able to simplify the equations and try to find analytical solutions. So, lubrication 

approximation is useful and apart from that, we have also learned here order of magnitude analysis, 

which we should try to practice and get a hang of it, because it comes handy in a number of cases. 

We will stop here. Thank you. 

 


