
Fundamentals of Fluid Mechanics for Chemical and Biomedical Engineers  

Professor Raghvendra Gupta 

Department of Chemical Engineering  

Indian Institute of Technology, Guwahati 

Lecture 27 

Fully Developed Flow in a Circular Channel 

In this lecture, we will discuss fully developed flow which is laminar in a circular channel or a 

cylindrical channel. Now a circular channel or cylinder is a very frequent occurrence in our day-

to-day life in chemical engineering applications where we encounter a number of pipes whose 

cross-section is circular or in biomedical applications, for example, the blood vessels, arteries, 

arterioles, capillaries, all of them are of circular cross-section.  

Some of them may be flexible. But as a first approximation, we can use the laminar fully developed 

flow relationship to find out the pressure drop, for example, or for a given pressure drop the flow 

rate etcetera. So, we will look at this very important topic from chemical and biomedical 

engineering perspective as well as in general. 
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So, let us remind ourselves first the momentum and mass conservation equations. So, this is 

continuity equation and this is Cauchy momentum equation where we have a ρ, a substantial 

derivative of velocity, so D/Dt of velocity vector, that will be equal to gravity force, which is body 



force + divergence of stress tensor, which is a second-order tensor having 9 components as listed 

here. 

And when we substitute it for Newtonian fluids and assume the fluid to be incompressible as well 

as having constant viscosity, it simplifies in the vector form like this, where we have the stress 

components getting dissolved × pressure which is the dominant normal stress, generally viscous 

normal stresses are negligible and from the viscous shear stress we get μ ∂2V. So, ∂2V, actually 

will have viscous normal stress as well. 

So, these are the conservation equations in the vector form, but we know that when we have a 

circular channel or a cylindrical channel of circular cross-section, it is convenient to use a 

cylindrical coordinate system for such a case, so what we will do, we will expand these system of 

equations of continuity as well as Navier-Stokes, which are momentum conservation equations in 

the cylindrical coordinates and then apply the assumptions and obtain the relationships for velocity 

profile etcetera there. 
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So, assuming all the, all these that the flow is Newtonian, it is incompressible and the viscosity is 

constant, we can expand the continuity and momentum equation in the cylindrical coordinates. We 

have already seen when we discussed the continuity equation that how this comes about from a 



vector equation or mass conservation in the vector form, how we can find out the mass 

conservation in terms of cylindrical coordinates.  

So, the first remains same, ∂, ∂/∂ t of ρ + 1/r ∂/∂ r of ρ r Vr, so you may note here that it is ρ r Vr 

and the next term 1/r, ∂/∂ θ of ρ Vθ and + ∂/∂ x ρ Vx. So, note here that what we have used here is 

x is the axial coordinate. So, when we have a cylindrical coordinate system, we will have at an 

arbitrary distance at an angle θ at a distance r from origin, you will have r θ and let us say z.  

So, many times we use z of or you can also use x because there is no x, y otherwise here. So, r θ 

and x coordinate are axial coordinate are cylindrical coordinate system that we are going to use 

here. So, this is continuity equation. Then Navier-Stokes equation for r component you will have 

left-hand side, which is the fluid acceleration and gravity term, pressure gradient term and the 

system expanded here. 

We will not derive these, you can find such form of equations in standard textbooks and using the 

same procedure that we derive the equation for a Cartesian coordinate system, these equations can 

be derived, but they are slightly more cumbersome to find. This is the equation for θ component, 

especially this is the bit which looks very different and the axial component.  

So, let us look at how we can, using these equations, how we can simplify them for a fully 

developed flow in a circular channel. Here we have used for axial coordinate x in many textbooks 

or in many places you will also find this in terms of z. So, it might be r θ x coordinate or r θ z 

coordinate, x or z are axial coordinate. 
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So, we can define the problem in such a manner that a liquid flows inside a horizontal channel 

having a circular cross-section which has radius R and we can assume the flow to be steady. So, it 

is time independent, the flow is laminar and flow is fully developed. So, first, we will simplify the 

continuity and momentum conservation equations.  

So, find out that what are the simplified equations from the three equations in r θ z coordinates or 

r θ x coordinates and the continuity equation. And then once we have simplified we will obtain the 

velocity profile of the liquid. We will obtain the shear stress distribution, the volume flow rate and 



average velocity. From that we will obtain what is called the Hagen–Poiseuille equation which 

relates pressure drop with the flow rate and we will also find the maximum fluid velocity and 

where does it occur in the channel. 

So, this is a schematic diagram where we see the cross-section and the radius of the channel is R 

and we take at R = 0 we can keep the origin and the radius is R so wall is at r = R and the flow 

happens along the axial direction. Now the flow is in x direction and the pipe is placed horizontally 

so the gravity will act in the vertically downward direction and it will have components in and r 

and θ directions. 

In the equations, in the previous slide we used Vx as the x component of velocity, here we will use 

in place of x simply u as x component of velocity to make things easier for typing. So, let us write 

down the continuity and momentum conservation equations, like same equations that we saw in 

the previous slide, so we will skip them through and let us start with the assumptions that we will 

have for a fully developed steady laminar flow in a channel. 
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So, first assumption that the flow is steady, that means that all the time derivatives will be 0, so in 

the continuity equation we will have ∂/∂ t of ρ is 0, ∂/∂ t of Vr, Vθ and u, which is axial component 

of velocity, all of them are 0, then flow is incompressible, so ρ is constant and our continuity 

equation will become simplified.  



We can take ρ out of the derivatives and because of steady or incompressible flow ∂/∂ t term will 

anyway become 0. Then flow is axisymmetric, so axisymmetric means that the flow is symmetric 

about the axis, so there is no flow along the θ direction, and there are no gradients along the θ 

direction, so ∂/∂ θ term or ∂2/∂ θ 2 term will be 0 as well as Vθ will also be 0. So, we can write that 

all the velocity components, their derivative with respect to θ will be 0 and there will be no velocity 

component in the θ direction. 

Then flow is fully developed, so flow is fully developed, that means the velocity profile along the 

x direction remains independent of x coordinate that is the direction in which the flow happening. 

So, that means the derivative of velocity components along the x direction are 0 or with respect to 

x direction. So, ∂/∂ x of Vr = 0, ∂/∂ x of Vθ = 0 and ∂/∂ x of u = 0. This will become in significant 

∂/∂ x of Vθ = 0, because we already know that Vθ = 0. 
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So, with listing down all these assumptions, now we can start simplifying the equations. So, we 

will begin with continuity equation which we have already written in the form for an 

incompressible flow. So, in this if we see all the derivative with respect to θ, they are 0, so this 

term becomes 0 and flow is fully developed, so the derivative with respect to x are 0, so both of 

these terms are 0 and we will end up with this term only 1/r ∂/∂ r of rVr, that = 0. 



Now. if we look at Vr, ∂/∂ x of Vr = 0 because the flow is fully developed and the gradients along 

the θ direction is 0, so ∂/∂ θ of Vr = 0. So, this suggest that Vr is not a function of x and from here 

we can conclude that Vr is also not a function of θ or it is independent of θ.  

So, if we look at this equation now and we can integrate it to find that rVr is a constant, so when 

we integrate this equation we get rVr = constant. Let us say this constant is c, so we can write 

down that Vr = constant/r, so Vr = c/r. Now as we have done earlier for some of the problems that 

we solved in Cartesian coordinate system.  

For example, flow of a falling liquid film or flow between two parallel plates that we saw that for 

the transverse component for the velocity component for the y component of velocity, velocity at 

the wall = 0. Similarly, we can use Vr = 0 at r = R. So, that means because Vr = 0 at r = R that 

means c has to be 0, because at r is equal R, Vr will be c/ R and if it is 0 that means constant c = 

0.  

So, now we know that Vr = 0, so Vr = 0, Vθ = 0, that means flow is one dimensional, we have only 

one component of velocity which is non-zero, which is along the axial direction or u is non-zero. 

So, this is what we have obtained by simplifying the continuity equation. 
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Let us is look at the momentum conservation equations. We start with the momentum conservation 

equation along the r direction. So, we know that the flow is steady, so this term is going to be 0. 



Now we know that Vr = 0, so this term will be 0. We know that derivative with respect to θ is 0, 

or vθ is 0, so this term is 0, and then we know that ∂/∂ x for the velocity components are 0, so this 

term is also 0, Vr = 0, so we can write this term to be = 0, Vr = 0, so we can write this term to be 

equal to 0 and Vr = 0, so this term = 0. 

Now Vθ is also 0, so this term, all the terms which have Vθ are also 0. So, we will simply obtain 

from this that ρ gr - ∂/∂ r of p = 0, so that is the simplified form of momentum conservation equation 

along the r direction. Now we write the momentum conservation equation along the θ direction 

and see how we can simplify it. So, we will start with that the flow is study.  

So, this term is 0, then we can use the fact that Vr = 0 and Vθ = 0, so this term is 0, vθ = 0, so this 

term is equal 0, so Vrθ are 0, so this term is 0, and Vθ = 0, so this term is equal 0, Vθ is 0, so this is 

also 0, this are 0 because Vθ = 0, this term is 0, because Vr = 0 and this term is 0 because Vθ is 0.  

So, again, we have two terms, one because of gravity and the other because of pressure, so we can 

write ρ gθ - 1/r, ∂/∂ θ of p = 0. So, that is the simplified form that we obtained from a θ momentum 

equation or momentum equation along the θ direction. Then we can write the momentum equation 

along the axial or x direction and we can start using the assumptions.  

So, the flow is steady, this term is zero because Vr = 0, so this term will become 0 and Vθ = 0, so 

this term will also become 0, flow is fully developed, so this term will become 0, and we do not 

have any component of gravity along the axial direction, because we have assumed the flow to be 

horizontal, so this is ρ gx will also be 0, because gx = 0.  

And again, the derivative of u with respect to θ will be 0, so this term is 0, and because of the fully 

developed flow derivative of u with respect to x are 0, so this term is 0. So, now are left with the 

one term in the pressure gradient in the form of pressure gradient - ∂/∂ x of p and another viscous 

term 1/r ∂/∂ r of r ∂/∂ r of u. So, we are left with these three simplified equations. 
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Now let us look at the two equations from r and θ coordinates, r and θ coordinates, so we get from 

r momentum equation, ρ gr - ∂/∂ r of p = 0, from θ momentum equation we got ρ gθ - 1/r, ∂/∂ θ of 

p = 0. Now if we look at gr and gθ because the flow is horizontal, so the will be function of actually 

θ not of r. 

So, if we look at, we take a point here which has coordinates, so we can say that the coordinates 

of this point r, r θ and x, so at this point, the angle will be θ and the gravity acts in vertically 

downward direction. So, we can, because the angle between the horizontal line and this line is θ, 

so vertical line and normal to it this angle will be θ, and this will be my direction of unit vector 

along θ direction and this will be direction of unit vector along radial direction.  

So, the gravity, when we find out gravity component along the θ direction, the magnitude of this 

component will be g cos θ and it will be in the negative θ direction, so that is why we have a - sign 

there. Now similarly for, for the component of gravity along the radial direction, the magnitude 

will be g sin θ and it is in the negative direction.  

So, we will have - g sin θ. Now a with this we can substitute the values of gr and g θ here, so if 

you substitute the value of gr and integrate, we will get p =, or we will get ∂ p/∂ r = ρ gr and when 

we integrate we will get ρ gr, so in place of gr we can substitute - g sin θ and ∂ r and when we 

integrate, we will get a function which is independent of r, but it can be a function of θ and x, so 

on integrating this equation, we will get p = d sin θ is independent of r.  



So, we can write this, ρ g sin θ with - there and on integrating we will get r, + a function of θ and 

x in general. Now we can integrate this equation, so when we integrate, we will get p = ρ and in 

place of gθ we can substitute - g cos θ, ∂ θ, + because we are integrating with respect to θ, so the 

constant can be a function of r and x in general.  

Now when we integrate this, we have missed a r here, so there should have been a r, so that p = - 

ρ gr sin θ + f of r, x, so if we compare the two expressions that we have obtained for p that is - ρ 

gr sin θ + f of r, x, - ρ of gr sin θ + f of θ x, so from this we can say that the function will be a 

function of x only, it will not be a function of θ and r, so the pressure will be function of - ρ gr sin 

θ + f of x. 

Now if we differentiate this with respect to x, pressure with respect to x, then we will get ∂ p/∂ x 

= fʹ x and the thing to note here is that this term is not a function of x, so its derivative with respect 

to x will become 0, and this relationship which tells us that partial derivative of p with respect to 

x is only a function of x, this we will use in the subsequent analysis. 
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So, we have written this the simplified form of the momentum equation along the x coordinate. 

Now this we obtained that - ∂ p/∂ x + μ/r × ∂/∂ r of r ∂ u/∂ r and if we rearrange it, we will get this 

form. Now as we saw that the left-hand side which is ∂ p/∂ x is a function of x at most, it is not a 

function of r and θ. Now the right-hand side is the derivative μ is a constant and this is a derivative 

of u multiplied by r and so on.  

So, u is not a function of θ because we saw that ∂ u/∂ θ = 0 because the ∂/∂ θ for all the velocity 

components is 0, u is also not a function of x, because ∂ u/∂ x = 0 because of fully developed flow, 

so u can be a function of r only. So, if that is the case we say that the left-hand side is a function 

of at most of x and right-hand side can be a function of at most r, that means both of them are 

going to be equal, and they are constant. 

So, they are neither function of x nor of r, but they will be constant. So, we can write this that ∂ 

p/∂ x are equal to the right-hand side that will be equal to a constant. Now because u is only a 

function of r, it is not a function of θ and x, so we can write these partial derivatives in terms of 

ordinary derivatives. Similarly, for ∂ p/∂ x, we can write it as dp/dx. 
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So, now we have simplified using all the simplified equations, the continuity equation, the 

momentum, all the three momentum equations, this is the equation that we obtained. Now we can 

integrate it, and see what we get. So, when we integrate this equation, we will get or we can 

rearrange it, so r will go this side and μ will go in the denominator, we will get d/dr of r du/dr = 

r/μ, dp/dx or ∂ p/∂ x. 

Now, on integrating, we will r2/2μ ∂ p/∂ x + a integration constant, let us say this constant is c1 

and that will be to r du/dr. We can integrate it further, but before we will to divide it by r, so we 

can get du/dr = r2/2μ, 2μ will become r/2μ, when we divide it by r × ∂ p/∂ x, + c1/r. 

Now when we integrate it further, then we will get r, on integrating r, we will get r2/2μ, so r2/2 and 

there is already 2μ, so it will become r2/4μ × ∂/∂ x of p, + when we integrate 1/r, we will get ln r, 

so c1 ln r + another constant of integration, this we call c2. Now our next task is to find out these 

two constants, c1 and c2 and to find these we need two boundary conditions.  

So, we have the first boundary condition will be that at r = 0, if you look this equation at r = 0, 

du/dr will become infinite if c1 is non-zero, right? So, this for du/dr to remain finite, we will need 

to have c1 = 0 or you can look at from here that for this to remain physical, ln r to remain definite 

or for u to remain finite at r = 0, c1 has to be 0. 



And another boundary condition which is at the wall, so at the wall we have r = R, which is the 

channel wall at this, because of no-slip boundary condition u = 0 or axial component of velocity 

is 0. So, from the first consideration we get c1 first constant of integration = 0. And from the 

second consideration, we will get u = 0 at r = R, so we will get R2/4μ × ∂ p/∂ + c2 = 0 because this 

term has become 0 now, because c1 is 0.  

So, we will get c2 = - R2/4μ ∂ p ∂ x and we substitute these two, so we can write down this - R2/4μ 

∂ p/∂ x × 1 - r2/R2. So, that is the velocity profile in the liquid. At any section in this pipe, we will 

find that the equation of this velocity profile is represented by this equation, you noticed it that this 

is the equation of a parabola. So, that is why it is called that the fully developed laminar 

incompressible flow in a circular channel is parabolic, where velocity profile is parabolic. 
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Now the next thing is that we need to find the shear stress distribution and we know that the flow 

is one dimensional so only one component of shear stress will be present, which will be τ rx. So, 

τ rx, if we write down the expression for it for a Newtonian fluid in terms of rate strain, so that 

will be μ × ∂ u/∂ r + ∂/∂ x of Vr and ∂/∂ x is 0 or Vr is 0.  

So this term is 0, so we will have this simplified to be that τ rx which is the shear stress distribution 

that = μ × ∂/∂ r of u and when we write down this, the derivative of it, we found just in the previous 

slide that = R/2μ ∂/∂ x of p. So, we get τ rx = r/2 ∂ p/∂ x. 



Next we need to find the volumetric flow rate. So, the volumetric flow rate can be found when we 

integrate V dot dA over the cross-sectional area because the velocity varies along the r direction, 

so we can take a elemental area at a distance r from the origin and the thickness of this elemental 

area is let us say, dr, so the area of this strip will be dA = 2π rdr, so we can substitute the value of 

u from here, which is - R2/4μ ∂/∂ x of p × 1 - r2/R2 × 2π rdr, so 2π is a constant. It can come out of 

integration multiplied rdr. 

Now we can integrate all of this is constant because ∂ p/∂ x is independent of r, so we can take this 

out of the integral sign and this will become 2π × - r2/4μ, so when we simplify it, it will become - 

π R2/2μ × ∂ p ∂ x and we need to integrate. So, this will, the first time when we integrate this 

multiplied by r, so when you integrate r you will get r2/2. 

The second term, r2/R2, R2 is of course a constant when you multiply it by R, you will get r cube, 

so when you integrate r cube you will get r4 / 4 and we will substitute the limit from 0 to R which 

is 0 is at r = 0 at the axis, R is radius at the wall.  

So, when we substitute this, the first term will become R2/2 and the second term will become R2/4, 

so this will give you R2/2, so you will get Q = -, sorry from here you will get R2/2 - R2/4, which 

will give you R2/4. So, when you substitute this, you will get - π r4 because r2 × r2 that will come 

r4 × 2μ × 4 will become 8μ × ∂ p/∂ x, that is the relationship for the flow rate.  

And it can be written in terms of diameters, so when you replace R = D/2, so R4 will be D4/ 16 and 

16 × 8 will be 128. So, you will have Q = - π d4/ 128μ × ∂ p/∂ x. So, that is the relationship for the 

volumetric flow rate. You can also change it to mass flow rate, so you can multiply this by density, 

Q by density. 
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And now next task is to find out the average velocity which will be the volumetric flow rate divided 

by the channel cross-sectional area. So, before we do that, we can see here that ∂ p ∂ x is constant, 

when we saw the left-hand side of the partial differential equation and right-hand side are equal 

then we established that ∂ p/∂ x is a constant and we could have written it as a constant. 

Now we write this as Δp/L, which is the pressure gradient. So, if you have two points, let us say 

point 1 and point 2 in a channel. And let us say pressure at point 1 is p1 and pressure at point 2 is 

p2, because we have positive x direction along this direction, so let us say at point 1 we have x = 

0 and at point 2 we have x = L, then we can write ∂ p/∂ x or dp/dx, that will be equal to p1 - p2 

equal to 0 - L.  

So, if we say that p1 - p2 = Δp, then we will have - Δp/L. So, ∂ p/∂ x is - Δp/L, we know that the 

flow happens from higher pressure to lower pressure, so Δp will be a positive number and L is the 

length, so that will also be a positive number so the pressure gradient ∂ p/∂ x will be negative. 

So, we need to remember that and we can write this ∂ p/∂ x simply in terms of - Δp/L and the 

relationship will change now the - sign will go away and you will have Q = π4 / 128μ × Δp/L. And 

this equation is known as the famous Hagen–Poiseuille equation which relates Q with Δp/L or the 

pressure drop per unit length with the volumetric flow rate in a circular channel. 
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And next we need to find the average velocity. So, to find the average velocity we can divide the 

volumetric flow rate by the cross-sectional area which is π r2 and we will get that 𝑉̅ = - R2/8μ ∂ 

p/∂ x, so if you look at the expression for the velocity profile then we can write this = V average × 

2, because we just so that V average equal to R2/8μ × ∂ p/∂ x.  

So, we can write that u = 2 × 2 times of average velocity × 1 - r2/R2. So, that is an easier expression 

to remember. Now we also need to find the maximum fluid velocity and its location, so we can 

find this by writing the expression for du/dr and setting it equal to 0, so the expression of u, you 

can derive it with respect to r and find this = 0, and when you derive this is all constant.  

So, the first term is also a 0 because 1 is a constant, so derivative of 1 with respect to r will be 0 

and when you to differentiate this you will get - 1/r2 × differentiation of r2 which will be 2r, so you 

will get - 2r/R2, that means the derivative is 0 at r = or du/dr is 0 and r = 0. 

So, that means the velocity is maximum at r = 0, that you could have seen from here itself that if 

you substitute this term is going to be maximum, because this term is positive because - ∂ p/∂ x is 

positive. So, this term, the entire term in the bracket is going to be maximum when we have r = 0, 

so at r = 0 the velocity is maximum.  

So, you could find the maximum velocity by either way, the location of maximum velocity and 

the expression of this will be - r2/4μ ∂ p/∂ x which is also equal to you can see from here that = 

twice of average velocity, so the maximum velocity twice the average velocity. So, we can write 



that the velocity profile = U which is the maximum velocity × 1 - r2/R2. So, that is the velocity 

profile. 
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So, we have learnt quite a bit of things today. Let us just summarize that, that for incompressible 

laminar fully developed flow in a circular channel, the velocity profile we obtain is u = U × 1 - 

r/R, R2/R2 and this is maximum velocity, U is maximum velocity. And that is also equal to twice 

of average velocity.  

Now we have derived the Hagen–Poiseuille equation which relates pressure drop with the flow 

rate and this is the expression. So, we have, we can rearrange it to find out pressure drop in terms 

of flow rate, which = Δp = 128 × μ × L /π, D4Q, where μ is the fluid viscosity, L is the length of 

the pipe and D is the diameter of the pipe. 

Now you can have it in analogy or analogue with the electric current relationship where we have 

the voltage difference = current times resistance and here the flow happens because of pressure 

difference. So, we have pressure difference = the flow of fluid or the flow rate of which is Q, here 

the flow rate of charge is the current, so we have a analogue here.  

So, by analogy we can say that the flow resistance R can be represented by 128μ L /π D4, and this 

is used quite a bit in human physiology to find out the relationship or find out the relationship for 



the flow resistance. So, this = 128μ L / π D4. You can notice here that the resistance to flow is 

proportional to viscosity and it is proportional to length.  

So longer the channel, more the resistance, higher the viscosity, more the resistance and you can 

see that it is inversely proportional to D4, that means smaller the channel, smaller your D, smaller 

the channel size, more is the resistance to flow and it increases very rapidly because you have D4. 

So, for the same flow rate if you look at the pressure drop will be high in the channels of small 

diameter. So, that is all we have for this lecture. Thank you.  


