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Navier Stokes Equations: Flow in a Falling Film 

In the previous lecture, we derived the Navier-Stokes equation which are momentum conservation 

equations in the differential form for an incompressible Newtonian and a liquid having constant 

viscosity or a gas having constant viscosity. So, in this lecture, we will solve a problem which is a 

falling liquid film due to gravity and we will find out the velocity profile in this liquid film starting 

with the mass and momentum conservation equations in the differential form. 
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So, to remind ourselves these are the momentum conservation equations in the form of stresses 

here and these equations are valid for Newtonian as well as non-Newtonian fluids and we call 

Cauchy momentum equations because we have not still replaced the stresses using the constitutive 

equation. So, you might remember the constitutive equations are the relationship between stress 

and rate of strain. 
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So, once we replace the stresses in terms of rate of strain, what we get is Navier-Stokes equations 

where we have assumed those constitutive equations for a Newtonian fluid. And we have also 

assumed that the viscosity is constant so we can take viscosity out of the derivative in these x, y 

and z component equations. 

You might see that in all of these equations this is in the vector form. So, the terms on the left-

hand side, they represent the fluid acceleration multiplied by of course density. So, if you look at 

the unit of each term, on this side, it is ρ into g. So, basically mg divided by volume. So, this is 

force per unit volume, so the unit of each term will be force per unit volume. 

Similarly, on the left-hand side ρ is mass per unit volume, kg/m3 is the unit and ∂v/∂t is 

acceleration. So, this is the mass per unit volume multiplied by acceleration. The first term is the 

local acceleration and these three terms which is basically nothing, but V.∇ operated on V where 

V is a vector.  

So, this is called convective acceleration or the acceleration which is there because of the bulk 

motion of the fluid. In some cases, or in some places you might also see the name advection. This 

term is known as advection also. This is also called the inertial term. And the first term is known 

as unsteady term or transient term because it is time dependent. So, when the flow is steady this 

term will be 0.  



This is the time due to gravity or you can replace g with a body force or ρ g with a body force if 

there is a body force apart from gravity. ∇p is pressure term or pressure gradient term. So, this is 

the term due to the pressure forces and the last is viscous term and the term is because of the 

viscous effect or viscous stresses present in the flow. 

Now we have these equations, if you write in the vector form, you have in this equation because 

we are assuming the flow to be incompressible and of constant viscosity, so ρ and μ are constants, 

and you know the acceleration due to gravity. So, you if look at, there are unknowns, unknowns 

in system of equation are vector V or in the component form you u, v and w. And another unknown 

is pressure p. Now you have one set of equation which is momentum conservation equation in the 

vector form or you can take three components. 

Another equation is mass conservation. Of course, so you can write ∂ ρ/∂ t+∇.(ρV) =0 or if the 

flow is incompressible, so for incompressible flow you can write this as ∇.V =0. So, you have 

basically two equations, one coming from the continuity or mass conservation and another from 

momentum conservation. So, you have two equations and two unknowns and you can solve these 

equations for the unknowns or velocity and pressure. 
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But when you solve this, you also need the boundary conditions and if the flow is unsteady, then 

you also need the initial conditions. So, if the flow is unsteady then you need to know what is the 



velocity and pressure distribution because those are your unknowns and these are the things that 

you need to know at t =0 in case of unsteady flows so you should know the distribution of pressure 

and velocity in the entire domain at time t =0 or in the entire region of interest. 

Now there are boundaries. So, when you have analyse a fluid flow, you have a certain region of 

interest and in this region you want to analyse or find out the solutions for the velocity and pressure 

fields. So, you need to know in order to solve these equations, governing equations, mass and 

momentum conservation equations, you need to find out or you need to know the boundary 

conditions.  

So, the common boundaries that you will have that inlet and outlet boundary of your domain and 

the walls or if it is open to atmosphere then there might be a free surface or it is in contact with 

another fluid then it might be fluid-fluid interface. So, for inlet and outlet boundary, when we find 

out analytical solution, in most of the cases, we assume the inlet and outlet present to be far away 

at+infinity or - infinity.  

So, those problems are we so not need to in general define such boundaries. If we are solving these 

numerically then of course, your domain need to be finite and then you need to specify the velocity 

and pressure at the inlet and outlet boundaries or either you might need to define the velocity and 

pressure or you might need to define their gradients. 

So, what we will be looking at here that what are the boundary conditions at the gas-liquid, liquid-

liquid or solid-liquid interfaces. So, if you have a solid fluid interface, so it might be a solid-liquid 

or solid-gas interface, which is basically fluid is flowing on a solid wall or fluid is in contact with 

a solid wall. So, on this surface we will have no-slip boundary condition, which simply means that 

there is no relative motion between the solid surface on which the flow is happening and the fluid 

layer adjacent to it.  

So, at the solid wall, the fluid velocity will be equal to the velocity of the wall. Now you will have 

the tangential component of velocity that will be equal to the velocity of the wall. So, the velocity 

of the fluid the tangential velocity of the fluid will be equal to the velocity of the wall. If the wall 

is moving, then the tangential velocity will be equal to the velocity of the wall.  



The normal velocity will be also the velocity of the fluid normal to the wall will also be 0 if the 

wall is impermeable. In case if it is porous wall then you will need to define some flow rate or you 

need to, those pores will be counted as or will be treated as inlets and outlets as the case may be. 

So, a for a solid impermeable wall you will have no-slip boundary condition where the normal 

component of the velocity will be equal to 0 and the velocity which is tangential to the fluid will 

be equal to the fluid velocity. 

Now at a liquid-liquid interface or a fluid-fluid interface in general, what you have is if you have 

two fluids, two immiscible liquids in contact with each other, fluid 1 and fluid 2, then in order to 

understand or in order to find the velocity field in such a system, you will need to solve the velocity 

and pressure field for fluid 1 and velocity and pressure field in fluid 2. So, we need the boundary 

condition at this interface. This will be, of course, we valid when we talk about liquids which are 

immiscible because there is no mixing of the two fluids. 

So, we will have to have one velocity field and one pressure for each fluid and at the boundary, at 

the fluid-fluid boundary because of the kinematic boundaries, the kinematic boundary condition 

will be that we will have the velocity conditions there that what is the velocity of the interface. So, 

continuity of velocity component normal to the interface.  

That means the velocity component normal to the interface will be equal. So, the velocity of fluid 

1 normal to the interface, at, in fluid 1 will be equal to velocity normal to the interface in fluid 2, 

so the normal components of velocity in fluid 1 and in fluid 2 will be equal and they will be equal 

to the interface velocity. Why? If there is a difference between the two, then that means a certain 

wide will be created between the interface and the fluid which is not possible or which is not 

feasible.  

This will not be valid when there is some mass transfer or evaporation happening at the interface 

then you need to take into account the mass transfer or phase change, evaporation or condensation. 

But for isothermal flows where there are no phase change, no mass transfer, we will have the 

normal components of velocity at the in the two phases will be equal.  

The other component of velocity will be, the velocity component which is tangential to the 

interface, so the velocity component tangential to the interface will also be equal. So, the tangential 



velocity will be continuous. That means the velocity if we assume that the coordinate system here 

x, y, and the interface is aligned along the x direction then we can say that u which is the x 

component of velocity in fluid 1 is equal to u in fluid 2 and v in fluid 1 from normal component of 

velocity, this is at the interface. 

So, at the interface u1 =u2, v1 =v2, so the normal component of velocity and the tangential 

component of velocity at the interface will be equal, that means the velocity will be continuous or 

the velocity vectors at the interface in fluid 1 and fluid 2 will be equal. So, that simply means v1 

and v2 at the interface, they are equal. 

Now this interface will also be in a mechanical equilibrium, so the forces acting on it should also 

balance each other, so at the interface because it is a surface, so the forces acting will be the surface 

forces. So, shear stresses which are tangential to the interface, so viscous shear stresses, they will 

be continuous.  

So, that means τyx in fluid 1 will be equal to τyx in fluid 2, or if you write it in terms of the rate of 

strain, so mu1 du/dy in fluid 1, this will be equal to μ2 du/dy in fluid 2. So, we can see that the 

velocity is continuous at the interface and viscous shear stress is continuous at the interface, then 

we come to normal stresses.  

So, most of the time, in most of the cases, the viscous normal stress is negligible, so for the normal 

stresses because at the fluid-fluid interface, you have surface tension, so the normal stresses, 

difference between normal stresses will be balanced by the stress generated due to the surface 

tension.  

So, here p1 - p2 =σκ , which is the stress or normal stress because of surface tension, σ here is 

surface tension, not the normal stress, so please remember that, σ is surface tension and κ is 

curvature of the interface. For a sphere we have κ =2/R. 

So, those will be p1 - p2 which are pressures, we have not considered here viscous normal stresses, 

but if there are viscous normal stresses then we can say p1 plus the viscous normal stress in fluid 

1 - p2 plus viscous normal stress in fluid 2 that will be balanced by force due to surface tension. 
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Now a special case when you have a gas-liquid interface, for example a gas-liquid interface is open 

to atmosphere. You have a liquid film falling over a wall then what happens? At such a gas-liquid 

interface, we still have, the interface is basically the interface between two fluids.  

So, we still have the boundary conditions which we discussed just now to be valid, but we can take 

or we can simplify that the velocity gradients at the interface can be taken to be 0 or this should 

have been liquid side. When we are looking at a gas-liquid interface, in such cases, for example, a 

flow in a channel which is, this is free surface and the flow is driven by pressure here. 

Now at this interface there is air on top and the liquid in the channel, so we can write the continuity 

of viscous here stress, so from that continuity of viscous here is stress, we can write μl ∂u/∂y of 

liquid, that will be equal to μg into ∂u/∂y of gas. Now we can rearrange this in terms of ∂u/∂y of 

liquid that will be equal to the ratio of viscosities of gas divided by viscosity of liquid, so this 

basically ratio of viscosities.  

And this is multiplied by the gradient of velocity in the gas side. Now typically at the atmospheric 

temperature, the gas velocity is of the order of 10-5, whereas the velocity of liquid for example that 

of water is of the order of 10-3. So, there is two order of magnitude difference in the viscosities.  

If this term, if the velocity gradient in the gas side is not too large, then because μg/μl is a small 

number so we can neglect the gradient in the liquid side of, and then gradient at the interface in 



the liquid side and this helps us that to solve the velocity field in the liquid we do not need to find 

the velocity field in the gas. 

So, in such cases where we are not interested, for example, that flow in a river or flow in a canal 

or flow in a falling liquid film, we are not interested in finding the velocity in the gas and the gas 

velocity, there is no significant velocity in the gas, then only we will have this condition to be valid 

that the gradient in the velocity is not large. So, then we can assume that the velocity gradient at 

the liquid side will be at the interface will be equal to 0. 
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So, let us look at an example, but before that let us talk about what is fully developed flow. So, 

when you have the flow entering in a channel or in a pipe or in any closed conduit, so let us say 

that the flow enters in this channel from a, this might be a pipe that is in a free stream of liquid, so 

for example, pipe in a river far apart from the boundaries, so the velocity in the river is uniform 

and it comes in with a velocity U. 

But because of the no-slip boundary, the velocity here will become 0, so velocity at the walls 

because of the no-slip boundary condition, the velocity at the walls will become 0 and the fluid 

will need to rearrange itself, so some of the fluid will start moving towards in the transverse 

direction to rearrange itself and eventually this will keep happening until you achieve a velocity 

profile which remains unchanged.  



And when that happens, then such flow is called fully developed flow. So, fully developed flow 

refers to the flow in which there are no gradients in the velocity in the flow direction. So, ∂by ∂x 

of V in this case where the velocity or the flow is along the x direction, so ∂V/∂x =0, if it is a pipe 

flow then x might be the axial direction.  

If it is flow between two parallel plates, then x might be the direction parallel to the plates. We can 

write this in the component form, so ∂u/∂x =0, ∂v/∂x =0 and ∂w/∂x =0. In of the most of the cases, 

you will see that for example when we talk about Cartesian coordinates then ∂w/∂x will be 0 

because there will be no flow in the z direction, so w will become 0 and as we will see that v is 

equal to also be 0.  

So, most of the time when we use the fully developed flow, the relationship that we need to use to 

solve equations will be ∂u/∂x =0 where u is the flow along the x direction. So, that is one thing. 

Now we will also come across a term which is called velocity profile and that we will encounter 

again and again now onwards.  

So, velocity profile simply refers to the variation of velocity along the transverse direction. So, for 

example, if this is a flow between two parallel plates or flow in a rectangular channel, the velocity 

profile means that the velocity as a function of y coordinate. As you can see here that the flow is 

fully developed, so the velocity profile you take x1 at location 1 or location x2, location x3 or x4, 

on all the locations the velocity profile is same. 

But if you look at say, location y1 or y2, the velocity is varying, so there is variation in velocity 

along the transverse direction. And this variation is what we call velocity profile. So, for example, 

when we say the velocity profile is parabolic, that means this equation, the variation of velocity 

with respect to y, this equation is parabolic.  

When we say this is linear, then this equation is linear, when we have a flow between two parallel 

plates, then the relationship of this velocity profile is Vm into 1 - y2/a2 where a is the distance 

between parallel plates or when you have a flow in flow in a pipe then you have a velocity V =V 

maximum into 1 - y2/R2 where R is the pipe radius. The flow that occurs before the flow become 

fully developed is known as developing flow.  



And the length that is required for the flow to become fully developed is known as development 

length or the entrance length. So, you can see from here that if you take two corresponding points 

at locations, any location, say x2 and x3, then if you write u2 - u3 divided by x2 - x3 as an 

approximation of ∂u/∂x, the you can see because u2 and u3, they are equal, so this will become 0, 

so that is the definition of fully developed flow. 
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Now we will take an example of flow in a falling liquid film which is a common example. We can 

see it in many places, for example in a cooling tower, you can see a liquid film falling, so in this 

case what we take, a liquid film flows down through an incline plane surface in a steady, fully 

developed laminar film which is of thickness as, so the flow happens over this wall and it drains 

only because of gravity, it says that the flow is driven by gravity and there is no pressure gradient 

along the inclined surface.  

So, we can see that in most of the cases that we deal with in this course, the flow will be driven by 

one of the three mechanisms, one is the pressure driven flow which is the most common 

occurrence, that the pressure at one point is high and pressure at other point is low and because of 

the pressure difference there will be flow happening. 

The other driver for the flow will be gravity as here that from higher elevation the flow or the 

liquid goes from one place to another. The third driver is shear driven flow. So, for example, if we 



have some liquid on our hand, and if we blow over it then than that liquid will be flowing, there 

will be some flow in the liquid and that is because of the shearing notion that we provided by the 

air that we blew.  

So, that will be shear driven flow or one of the problems that we solve is which is called Couette 

flow, so in the Couette flow, there is flow between two parallel plates, but there is no pressure 

gradient that drives the flow, but the flow is because the upper plate is moved by a certain force 

and it has a velocity. So, because of the velocity of that force, the fluid next to that or the fluid 

layer next to it, if the upper plate is moving with the velocity U, the fluid next to it will also move 

with velocity U here. 

So, coming back to the falling liquid film, we need to write down the mass and momentum 

conservation equations continuity and Navier-Stokes equations and simplify it based on the 

assumptions that we have been given that the flow is steady, fully developed, laminar and 

incompressible. In this course, until and unless we have been specified or it has been specified, 

specifically that the flow is compressible, we will treat the flow to be incompressible.  

And once we have simplified the equations, we will need to find the velocity profile in the liquid, 

the variation of velocity in this liquid film, the shear stress distribution in the liquid film and the 

volume flow rate in the liquid film, and once we find the volume flow rate we need to find the 

average velocity. So, let us write down first all the assumptions, so it will help us in simplifying 

the equations.  

So, the first assumption is that the flow is steady, so that means that ∂by ∂t term for the all the 

variables will be 0, so in the continuity equation we will have ∂ρ/∂t =0. Similarly, in the Navier-

Stokes equation, ∂u/∂t, ∂v/∂t and ∂w/∂t in the three x, y and z component, they will be 0. 

Now the flow is incompressible. So, when the floor is incompressible our continuity equation 

which is ∂ρ/∂t+∂by ∂x of ρ u+∂by ∂y of ρ v+∂by ∂z of ρ w =0. So, because the density is constant 

as the flow is incompressible then this ρ can be taken out and the first term is 0, because the flow 

is steady as well as the flow is incompressible.  

So, we will have this ρ removed and the equation will remain, the equation will come out to be 

∂dot V equal to 0 or in the expanded form ∂dot dou, ∇.U =0 or ∇.Velocity equal to 0 which in the 



expanded form ∂by ∂x of u+∂by ∂y of v+∂by ∂z of w =0. The next assumption is that there is no 

variation in fluid properties in the direction normal to the screen.  

So, the flow happens along this plate and we can assume that the coordinate along the plate is x 

and the coordinate normal to it is y and the coordinate which is normal to this screen is z. So, there 

is no flow normal to the screen or there is no flow velocity normal to the screen and there are no 

gradients along those directions.  

So, we can have there, when there are no gradients, so ∂by ∂z of u =0, ∂by ∂z of v =0 and ∂by ∂z 

of w is equal 0, the gravity acts along this direction, so it will have x and y components. And there 

is no velocity component in the z direction, so w =0 because there is no flow in the z direction.  

And we also assume that the flow is fully developed as has also been given in the problem, so there 

is no velocity variation along the x direction, that means ∂u/∂x =0 and we already have w =0, so 

of course, ∂by ∂x of w =0 and ∂by ∂x of v is 0. So, with all these assumptions and the understanding 

of coordinates that x direction is along the plate, y direction is normal to it, and the z direction is 

normal to the screen. The plate is at an angle θ from the horizontal and the gravity acts in this 

direction. 
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So, let us write down the equations. First, we write down the continuity equation, which is already 

simplified to this form, ∇.V. Now we can start looking at each term one by one. So, the first term, 

∂u/∂x =0, because the flow is fully developed, ∂by ∂z for all the variables is 0, or w =0, so the last 

term is 0, so we will have only this term that ∂v/∂y =0.  

So, our continuity equation is simplified now. Now we already know, because the flow is fully 

developed, so ∂by ∂x of v =0., and because there are no gradients in the z direction, so ∂by ∂z of 

v =0. Now that means that v is not a function of either of x or y or z. So, v is simply a constant. 

So, this tells us that v is a constant. 

Now we know that along the y direction at y =0 which is the wall where y will be equal to 0 and 

at the other end y will be equal to h which is open to air or open to atmosphere. So, at y =0 there 

is no-slip boundary condition, so v and u will be 0 there, so because v =0 at y =0 and because v is 

equal to constant in the entire fluid, so v is going to be 0 everywhere in the liquid film.  

So, now we know that the flow is one dimensional because w is 0, v is 0, so there is only one 

component of velocity u, which is along the x direction which is non 0, so the problem is one 

dimensional now. 

(Refer Slide Time: 39:50) 



 

Now let us write down the momentum conservation equations. So, this is the momentum 

conservation equation along the x direction. So, when we write down the momentum conservation 

equation along the x direction we can try to simplify this equation by seeing or by finding out what 

terms can be neglected or can be canceled. So, the first term which is time dependent term, ∂u/∂t 

=0. 

Then the next term u ∂u/∂x and this term on the right hand side, second derivative of u with respect 

to x, both of them are 0 because they are fully developed flow, so ∂u/∂x is 0. Next w is 0 or ∂by 

∂z is 0, so this term is 0 here. And this term is also 0, so all the derivative with respect to z are 0. 

Now we know that v =0, so this term is 0 and we can simplify this term, so we are left with one 

term which is ρ gx and another term which is μ multiplied by ∂2u/∂y2.  

So, our equation simplifies the x momentum equation simplifies having only two terms. The next 

we look at the momentum conservation equation or Navier-Stokes equation in the along the y 

direction. So, again, in this the first time will be 0, because the flow is steady. Next term is 0 

because v =0 or ∂v/∂x =0 and this term will also be 0 because this is v is 0, w is 0 or ∂by ∂z is 0, 

so these terms which are derivative with respect to z, they will be 0.  

And because v is 0, so these two terms will also be 0. And finally, we have two terms left in this, 

that ρgy - ∂/∂y (p) =0. The third or equation which is the momentum conservation equation along 

the z direction. All the term which have w in it will be 0, because w =0 and there is no component 



of gravity along the z direction, so this term is also equal to 0, so this gives us the ∂p/∂z =0 and 

that means that p is not a function of z or p is constant with respect to z. 

So, with this we have simplified the x, y and z momentum equations and let us try to simplify these 

equations further or integrate it, so we will be able to find out the velocity profile. Now we can 

sort it out here that g will have component along x and y direction. So, this will be the component 

of g along y direction and this will be along x direction.  

So, along the x direction, we will have gx =g sinθ, we know that the angle between the horizontal 

and the plate is equal to θ, so the angle between the normal to this plate, which is this and the 

vertical direction that will θ. So, this angle is θ, so gy will be equal to g cos θ but - sin because y 

is on the other direction and gx =g cos θ, so gy will be - g cos θ. 

(Refer Slide Time: 44:42) 

 

Now we can simplify this equation and integrate it, so we can substitute what is gx, we just saw 

that gx is g sin θ, so this term become ρ g sin θ plus you have μ ∂2u/∂y2 and we can integrate it. 

So, before integration, we can take this term on the other side and μ also on the other side, so this 

becomes ∂2u/∂y2 =- ρ g sin θ/μ and integrate it.   

Note that u is a function of y only, we know that ∂u/∂x =0, so it is not a function of x and ∂u/∂z 

=0, so it is not a function of z. That means u is a function of y only, so we can change this partial 



derivative to an ordinary derivative, so we can write the second derivative of u that will be equal 

to - ρ g sin θ/μ and we can integrate it.  

So, when you integrate it, you will get du/dy =- ρ g sin θ into y but divided by μ plus a integration 

constant, let us say this constant is c1. And when we integrate it further, we will get u =- ρ g y2d/2 

into sin θ/μ+c1 into y plus another constant of integration c2. So, now we have two unknowns, c1 

and c2, and we can use two boundary conditions, one at the wall and another at the free surface of 

the film. 

So, at the wall, we already know because this wall is stationary, so at y =0, u =0, that is because 

of the no-slip boundary condition. So, when you do that at y is equal 0, u is 0, so this term is 0, 

this will also be 0 and this term will also be 0, so you will get c2 =0. Now at the free surface at y 

=h, we have du/dy =0, because we just saw when we discussed the boundary conditions on the 

free surface at the gas-liquid interface.  

The velocity gradient in the liquid film can be approximated to be 0, so we can say that at this 

point ∂u/∂y =0 which at this point is at y =h. So, we can use that and we already know what is 

du/dy and when we write that at this is 0 at y =h, so we will simply get c1 =ρ gh sin θ/μ.  

So, when we substitute that, the values of c1 and c2, we will get u =ρ gy sin θ/μ of - ρ gy2 sin 

θ/2μ+c1, which is ρ g h sin θ/μ into y and we can take ρ g sin θ/μ out from it, so from here we will 

get h into y, so yh - y2d/2. So, that is our velocity profile in the liquid film which gives us the 

velocity variation or variation in u with respect to y. 
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Now we will find out the shear stress distribution in this liquid film, because the flow is one 

dimensional as we saw that the flow happens only along the x direction. So, the only shear stress 

component which will be non-0 will be τyx or τxy, so we can write τyx that will be equal to μ into 

∂u/∂y+∂v/∂x and because v =0 or ∂by ∂x =0, so this term will be 0 and you will τyx =μ ∂u/∂y and 

we already know what is ∂u/∂y.  

So, we will have μ multiplied by ρ g sin θ h - y. So, that is the general expression for the shear 

stress in the liquid film and you can see that this equation is linear. So, you will have the linear 

variation of shear stress, whereas the velocity profile as you saw in here, the velocity profile this 

equation is parabolic. So, you have a parabolic variation of velocity profile here. 

And then we need to find the volumetric flow rate which will be, the volumetric flow rate will be 

integral V.dA over a cross-sectional area because the flow is fully developed, so you take any 

section at any x and integrate the velocity over the cross-sectional area because the velocity varies 

along the y direction, so we will need to integrate it.  

We cannot take it to be uniform flow, and the area will be, if you take any cross-section at a 

distance y and this will be dy, let us take that the depth of the plate of the width of the plate normal 

to the screen is b, so this area will be b into dy, where b is width of the plate, which is the dimension 

of the plate normal to screen.  



So, dA will be bdy and you will have ubdy integral from 0 to h, so b is a constant, you can take it 

out and you can replace u with the expression for velocity with is ρ g sin θ/μ into yh - y2d/2 into 

dy, and we can take all this also out of the integral sign, because this is constant with respect to y, 

so we will have a ρ gb sin θ/μ into when we integrate yh, so h is a constant into y2d/2, first term.  

From the second term we will get y3/3 into 1/2, so that is y3/6. When you put the integral limits 

from 0 to h, so the first term will give you h3/2 - h3/6 and you will get from here h3/3, so you will 

get ρ gb sin θ μ into h3/3 that is your flow rate in the liquid film. Now finding out the average 

velocity which is nothing but the flow rate divided by the cross-sectional area and cross-sectional 

area is b into h. So, you divide the flow rate expression by bh and you get the average velocity. 
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So, in summary, in today's lecture we have looked at the Navier-stokes equations and how we can 

use the assumptions that are inherent in the problem or that have been explicitly given in the 

problem, how we can use those assumptions and apply the boundary conditions so that the 

equations can be simplified and we can integrate the equation and find a solution of the flow.  

So, looked at the boundary condition at the solid wall will be no-slip boundary condition, at the 

fluid interface we will have continuity of velocity and continuity of shear stress and at the free 

surface we can neglect the shear caused by the gas, which is above the liquid film, so at the 

interface at a free surface, we can assume that the velocity gradient is 0. 



And we also looked at that the flow is fully developed which is that ∂by ∂x where x is the direction 

of flow, ∂by ∂x of V is 0, where V is the velocity vector or we can write it in component form and 

the most important part will be that ∂u/∂x =0 where x is the direction of flow. And we applied all 

of these concepts to solve the flow in a falling liquid film which has a number of applications in 

chemical as well as biomedical engineering for example, the flow in the film which we have in our 

eyes which lubricates our eyes.  

So, we will stop here. Thank you. 


