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Mass Conservation: Differential Analysis 

In the previous lecture we discussed about mass conservation, we derived differential form of 

mass conservation or continuity equation. Continuing with that, we are going to discuss the 

mass conservation equation in cylindrical coordinates, in the previous lecture, what we 

discussed is or derived the mass conservation equation, wherein we took a control volume of 

cuboid type having dimensions dx, dy and dz. And then we took the mass conservation 

equation, which we derived from Reynolds Transport Theorem and implemented or found the 

2 terms, which was, one was the volume integral 
∂

∂t
 or integral control volume, so that term. 

And then the integral of ρV.dA over the 6 faces of such a cuboid. 

Now what we need to see is that we have derived the Cartesian coordinate equation and from 

that we could arrive the mass conservation equation in the vector form. But there are certain 

problems especially in Mechanical Engineering as well as Biomedical Engineering 

applications where we need to deal with flow in cylindrical pipes or cylindrical tubes, vessels 

etc. So, it is convenient to use a cylindrical coordinate systems for such cases.  
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So we will look at the conservation equation in the cylindrical coordinate system here. So, if 

we write down the mass conservation equation in the vector form, 
∂ρ

∂t
 + ∇.(ρV) = 0, which is 



the general form of continuity equation. In Cartesian coordinate, the first term of course will 

remain same, the second term, when you open up, you have 
∂𝜌𝑢

∂x
 + 

∂𝜌𝑣

∂y
+ 

∂𝜌𝑤

∂z
. 

In cylindrical coordinate system, when you expand the second term, the first term will remain 

same, unsteady term 
∂ρ

∂t
 + 

1

𝑟

∂(rρ𝑉𝑟)

∂r
 + 

1

𝑟

∂ρ𝑉𝜃

∂𝜃
 + 

∂ρ𝑉𝑧

∂z
.  
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Now this can be derived by doing the same thing what we did when we derived the continuity 

equation in the Cartesian coordinate system, so we can apply the mass conservation equation 

for a differential control volume in cylindrical coordinates. So we have this conservation 

equation and we can consider a control volume having dimensions in cylindrical coordinates. 

So, if we consider a cylindrical coordinate there are 3 directions, what we consider in 

cylindrical coordinates, r θ and z. So, the velocity component will be 𝑉𝑟, 𝑉𝜃 and 𝑉𝑧. 

Now if we take a control volume, then in this control volume, the dimensions of this control 

volume will be the dimension along the redial direction, this will be dr and along the z direction 

which will remain same. z direction in the Cartesian as well as cylindrical coordinate, it will 

be same, so it will be dz. And the angular direction or azimuthal or θ direction, the angle that 

is has rotated is d θ, but this is just the angle, so the length of this will be rdθ. 

Now on the other side, it will be r + dr into dθ and taking into account that we can find out the 

two terms and combine the terms, simplify it and we should be able to find the equation in the 

cylindrical coordinate system. The volume of this small control volume will be rdr into dθ into 



dz. So, basically dr into rdθ into dz, because such a small dimension we can approximate it to 

be a cuboid. 

Now the surface integral can be evaluated by considering again the 6 faces of this, and find the 

control, the fluxes on the control surfaces and at the contributions. The velocity vector in this 

case will be er, 𝑉𝑟 + eθ, 𝑉𝜃 and k𝑉𝑧. Now, we could have written in place of k, ez, but considering 

that the z coordinate is same in Cartesian as well as cylindrical coordinate. So, I have written 

this as ez = k. 𝑉𝑟, 𝑉𝜃, 𝑉𝑧 are of course the component along r, θ and z directions. 

er, eθ and k, they are the unit vectors along the radial direction, θ direction or angular direction 

and k is unit vector along the z direction. So, when we talk about cylindrical coordinates, so z 

direction is also generally referred as axial direction because it points or it is along the axial 

direction. So, when we put together we get this equation in the cylindrical coordinate. So, we 

are not going to do this, and I suggest that you do this exercise and try to derive the equation 

in the cylindrical coordinate. But we are going to look at a different perspective and try to find 

this equation from there. 
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So, we can use the vector form of the equation, which is basically 
∂ρ

∂t
 + ∇.(ρV) = 0. See, if we 

can write down the del operator in cylindrical coordinates and V in cylindrical coordinates and 

find the dot product, then we will be able to obtain the expanded form of continuity equation 

in cylindrical coordinates. 

So, to do that we need to find and relate first, because we might need to understand the 

derivatives of unit vectors. So, first what we will do is, we will relate the unit vectors in 



cylindrical and Cartesian coordinates. So, if we draw the unit vectors, the unit vectors in the 

Cartesian coordinates, they are shown in the blue colours. Along the x direction you have unit 

vector i, along the y direction you have unit vector j. 

If you take the unit vectors in the cylindrical coordinate system, the unit vector along the r 

direction is er and unit vector along the θ direction is eθ. So, we can write down er in terms of i 

and j, so if we do that er is equal to the component along the x direction will be cosθ i, so along 

the component because the magnitude of this vector is 1 and the component along the x 

direction will be cosθ i. Along the y direction, this component will be sinθ j and we know that 

cos2θ + sin2θ = 1. 

So the magnitude of er remains 1 and this is the vector form, we can write er in terms of i and 

j. Similarly we can write eθ, so eθ, if the angle between this line and this line is θ, they are 

normal to them, these two lines, the angle between them will also be θ. So, we can write eθ is 

equal to along the i direction, which will be pointing out in the minus directions, so it will be 

minus sinθ i + cosθ j along this direction, positive direction. 

So, we have been able to write er and eθ in terms of i and j. And the important thing to notice 

here is, that er and eθ, they are function of θ. So, if we take the derivative of er and eθ, with 

respect to θ, it will not be 0. So, let us find out the derivatives of first er with respect to θ. So, 

∂𝑒𝑟

∂θ
 = 

∂𝑒𝑟

∂θ
 which er is cosθ i + sinθ j. 

So, when we differentiate cosθ, differentiation of course θ is minus sinθ i + differentiation of 

sinθ is cosθ j. So, if you look at eθ, which is minus sinθ i + cosθ j, so 
∂𝑒𝑟

∂θ
 is basically nothing 

but eθ. So, this is a result that we will use when we find, when we expand the continuity 

equation in the cylindrical coordinate. 

Now we will similarly find the derivative of unit vector eθ with respect to θ. So, we write 
∂𝑒θ

∂θ
= 

∂

∂θ
. eθ is minus sinθ i + cosθ j. And when we differentiate it, minus sinθ,  so when we 

differentiate minus sinθ, we will get minus cosθ and when we differentiate cosθ, we will get 

minus sinθ. So, minus cosθ i, minus sinθ j, which will be equal to minus er. So, these 2 results, 

we are going to use.  
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Now so if we write down the derivatives of all the variables, all the unit vectors in the 

cylindrical coordinates, so the unit vector, the differentiation of er with respect to r θ and z is 

0. The derivatives or the partial derivative of eθ with respect to r and z, they are 0. The partial 

derivative of ez is 0 with respect to all the variables, r θ and z. There are only 2 partial 

derivatives which are nonzero here and we can understand that. 

So if we look at a cylindrical coordinates system, let us say, this is my origin and I have er, eθ 

and the normal vectors will be, the axial vector or the unit vector in the z direction will be 

normal to it. So, if we first look at the axial unit vector, ez or k, then this unit vector is not 

changing, when you change the unit vector magnitude is always going to remain 1, if it is the 

unit vector along z direction, you change r or θ or z, the unit vector along the z direction is 

going to remain same. 

If you look at er, so er, the unit vector, the magnitude is always 1, but if you are looking along 

the r direction, the direction will also remain same. So, that is why the derivative of unit vector 

er with respect to r is 0. But if you look at unit vector r, if this is θ and you turn it by a small 

angle, delta θ, let us say then the unit vector direction of er direction will change. So, that means 

with the change in θ, er is changing that is why we have this nonzero. And we can see with a 

bit of vector geometry, we can see that it is eθ. We have already seen in terms of i and j that 

this comes out to be a θ. 

Similarly, when you change z, er direction does not get changed, with the same argument eθ 

does not change with r. If you have eθ at one r, eθ is pointing here at another r also eθ will be 

pointing here. But if you change along a curve, if you have eθ pointing out here, next point it 

will be pointing out here. Again, there is a change in the direction. That is why you have dou θ 



of eθ is minus r. And again the last term, the vector does not change direction with z so this is 

0. 

So, that might just motivate us or we would like to look at that what happens when we talk 

about the unit vectors in x, y and z coordinates. So, in Cartesian coordinates, the unit vectors i, 

j and k their direction remain same if you change, x or y or z. So, 
∂

∂x
 of i, j and k, 0 

∂

∂y
 of i, j, k 

is 0 and 
∂

∂z
 of i, j, k and i, j and k is 0. That is what we have here.  
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So, with this, now we can try to substitute or we can try to write this equation in terms of unit 

vectors in cylindrical coordinates. So, we have 2 vectors here, the del operator, and vector V. 

So, vector V, we can write er 𝑉𝑟 + eθ 𝑉𝜃 + k𝑉𝑧. And the del operator is er 
∂

∂r
 + eθ 1/r , 

∂

∂θ
 + k 

∂

∂z
. 

Now I am not going to look at how this expression for del operator comes by when we are 

expanding it in cylindrical coordinates. You can look into it and it can be derived from the 

definition of del operator in the cylindrical coordinates and then you can write r in terms of say 

√𝑥2 + 𝑦2 and θ = tan-1 y/yx. You can take the derivatives and substitute and you will be able 

to find. So you can write 
∂

∂x
 in terms of r θ z, 

∂

∂y
 in terms of r θ z, or the partial derivatives in 

the respective coordinates and you will be able to obtain it. But we are not going to do that 

here.   



So, when we expand or when we substitute here, the first term will remain same because it 

does not have any vector. We need to find ∇.(ρV), but for simplification, I will just write down 

this in terms of  ∇.V and then later on when we find, we can replace v with ρ V. 

So, let us write down del, the same definition and the definition of V here. But, the one thing 

we need to note here is, before we take the dot product, we need to derive or we need to take 

the derivative or we need to differentiate this. Now, when we were working with cylindrical, 

sorry, Cartesian coordinates, or when we work with Cartesian coordinates, we can write it 
∂

∂x
 i 

or i 
∂

∂x
, it does not make a difference. But here why I have written in this manner or I have tried 

to follow this convention because of this region, before you take a dot product, first you need 

to take the derivatives. 

So, let us take the derivative for each case and see what do we get. So, what we substitute here 

is, er 
∂

∂r
 of the velocity vector + eθ 1/r  

∂

∂θ
 of the velocity vector + k . 

∂

∂z
 of velocity vector.  
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Now we will look at each term in succession and simplify. So, I have coloured the 3 terms, so 

we will look each term one by one. So, let us look at the first term, which is er .(
∂

∂r
 (er𝑉𝑟 + eθ𝑉𝜃 

+ kVz)). So, the first term when we look at er .
∂

∂r
 (er𝑉𝑟). 

The second term, er .
∂

∂r
 (eθ 𝑉𝜃). and the last term er .

∂

∂r
 (k𝑉𝑧). Now in all the brackets we have a 

product, so we will expand it, when we will expand this term, because er does not depend on r 

so it can come out, so we can write er.er and 
∂𝑉𝑟

∂r
. 



Similarly, eθ also does not depend on r, so we can write er.eθ, 
∂𝑉𝜃

∂r
, + er.k 

∂𝑉𝑧

∂r
. We do not have a 

k here now. So, er.eθ will be 0 because er and eθ are the 2 unit vectors in normal direction, r and 

θ. Similarly, er.k will also be 0. So, we will have only this term, er.er = 1. So, this will give us 

the first term is simplify to 
∂𝑉𝑟

∂r
, which is radial component of velocity. 

Let us look at the second term, so when we expand it, we will get eθ. 
1

𝑟

∂𝑒𝑟 𝑉𝑟

∂θ
, eθ 

1

𝑟
 
∂𝑒𝜃 𝑉𝜃

∂θ
 + eθ 

1

𝑟
, 

∂k𝑉𝑧

∂θ
. Now, remember er and eθ, they are function of θ. So, we need to expand these products so 

we will look into it, eθ dot this term we expand in this bracket here. So we can write 𝑉𝑟 this 

product of, differentiation of a product so 𝑉𝑟 and 
1

𝑟
, so  

𝑉𝑟

𝑟
 
∂𝑒𝑟 

∂θ
+  

𝑒𝑟

𝑟
 
∂𝑉𝑟

∂θ
. 

The next term, this term we look into now, so eθ dot the differentiation of eθ, so 
∂𝑒𝜃 

∂θ
 into 𝑉𝜃 / r 

+ eθ, unit vector eθ / r 
∂ 𝑉𝜃

∂θ
. The last term because k unit vector does not depend on θ, so we can 

write eθ . k 1/r  
∂ 𝑉𝑧

∂θ
 and this will be 0. 

Now if we will look at here, we have 
∂𝑒𝑟 

∂θ
, which = eθ. So, this term will give us 𝑉𝑟 / r, eθ unit 

vector. In this term we have a er so when we take a dot product of eθ and er, that will be 0. So, 

this term will be eliminated. So, now when we come here the differentiation of eθ is equal 

minus er so that is what we have written here, 𝑉𝜃 / r of minus er + eθ / r 
∂ 𝑉𝜃

∂θ
. 

Now eθ . er, that will be 0, so this term will be eliminated and you will have this term because 

eθ.eθ will be equal to 1. So, finally, this term you will have, when you simplify the second term 

here, then you will have 2 terms here, 𝑉𝑟 /r + 1/r  
∂ 𝑉𝜃

∂θ
. 
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The last term is simple because you have 
∂ 

∂z
 and neither er nor eθ depend on z so the dot product 

of k . er will be 0, k.eθ will be 0, so you will have only the last term k . k is = 1, so 
∂ 𝑉𝑧

∂z
 is this 

term. So, now we can replace all the 3 terms here, the simplified form of all the 3 terms in this 

∇.V. So, when we substitute ∇.V is equal to, then we can write the first term will be 
∂𝑉𝑟

∂r
 + 

𝑉𝑟

𝑟
, 

1

𝑟
, 

∂V𝜃

∂θ
 and the last term 

∂𝑉𝑧

∂z
. 

So, we have written ∇.V and we can combine these two terms here to get this. So, let us just 

see how do we get it, if we write 
∂𝑉𝑟

∂r
 + 

𝑉𝑟

𝑟
and we can multiply it with 

1

𝑟
 so we will get, when we 

multiply with 1/r  outside, then we will have to multiply with r inside. So, we will get 
1

𝑟
 and 

this r and r will cancel out so you will have 𝑟
∂𝑉𝑟

∂r
+ 1. 

Or you can write this, 1/r  and the term in bracket, if you look into it carefully it is 
∂(r𝑉𝑟)

∂r
. When 

you expand r 𝑉𝑟 of r 
∂ 𝑉𝑟

∂r
 +, sorry this should have 𝑉𝑟 here + 𝑉𝑟 into 1, so this is what we have 

written replacing these two terms. So, this is 1/r  
∂ r𝑉𝑟

∂r
. So, this gives us del operated on vector 

V and we can substitute this in the vector form of continuity equation. So as we said earlier 

that in place of ∇.V, we will write ∇.(ρV) and that will be our expanded form in the cylindrical 

coordinates.  
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So, now we will look at a simple example, which asks us that if flow is axisymmetric, it is 

steady and incompressible. The z component of velocity has been given which is 𝑉𝑧 = z and we 

have to find the form of 𝑉𝑟 or the radial component of velocity. So, we already know what is a 

steady flow? That means 
∂

∂t
  is 0, so the unsteady term is 0, when the flow is incompressible, 

density is constant. 

Now the axisymmetric flow, so axisymmetric as the name suggest simply means that the flow 

is symmetric about the axis. So, if you look at a cylindrical pipe where the cross section is 

circular, this is the r direction and this is the angular or θ direction. So, when things do not 

change along the θ direction, then we can say that the flow is symmetric about the axis or flow 

is axisymmetric. 

So, when the flow is axisymmetric, then 𝑉𝜃 = 0 or θ component of velocity is 0 and there is no 

variation in flow properties along the θ directions. So, that means if we take the partial 

derivatives with respect to θ, that is 
∂

∂θ
  = 0. So that is our axisymmetric flow, that means the θ 

component of velocity is 0, now we can write the continuity equation because the flow is 

steady, so this term is 0. The flow is axisymmetric so this term the 
∂

∂θ
 term and the term 

containing 𝑉𝜃 is 0.  

Now we end up with these two terms because the flow is incompressible. So, ρ is constant and 

we can take it out of the derivative or we can also divide by ρ so it will cancel out, so we will 



have the equation in the form of 
1

𝑟

∂ 

∂r
 + 

∂ 𝑉𝑧

∂z
. Now 𝑉𝑧 = z so 

∂ 𝑉𝑧

∂z
 = 1 so that is what we have 

substituted here.  

Now we need to integrate this equation, so we have to integrate this equation, we can do 
∂

∂r
 of 

r 𝑉𝑟, we take this term on the other side so that it will be minus 1 and multiplied by r so that 

will be equal to minus r. Now when we integrate this to r, then we will get r𝑉𝑟 = - r2 + a constant. 

This will be constant with respect to r, but it can still be a function of z because 
∂ 

∂θ
 = 0, the flow 

is steady so it will not be a function of time, it will not be a function of θ, but the constant can 

still be a function of z. 

So, we will just take r on the other side and that will give us the general form of 𝑉𝑟 where 𝑉𝑟 = 

minus r / 2 + f(z) / r, of course if we are asked, what is the simplest form of this equation when 

f(z) becomes 0 then we get the simplest form which will be 𝑉𝑟 = -r / 2. 

So, that is all for this lecture, in this lecture we saw some of the properties of cylindrical 

coordinate unit vectors. So, we saw the unit vectors, the derivatives with respect to r and θ, 

derivative of er and eθ with respect to θ, they are nonzero whereas the other derivatives of unit 

vectors are 0 and we used that to find ∇.V so we will use the cylindrical coordinate to solve 

problems quite often. 

Let us stop here, thank you.  


