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Macroscopic Balances: Energy Conservation 

In previous lectures we have applied Reynolds Transport Theorem. First we derived the Reynolds 

Transport Theorem and then applied it for Macroscopic Balances of Mass and Momentum. 
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In the lecture today we are going to do it or we are going to apply Reynolds Transport Theorem to 

derive a equation for energy conservation in Eulerian framework or in the Control Volume 

Formulation. 
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So, the usual Reynolds transport theorem that we have derived, which says the rate of change of 

system extensive properties. So, when we talk about energy the system extensive property will be 

the total energy of the system and the corresponding intensive property η in this case will be 

specific energy or total specific energy, which we will represent with small e. 
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So, let us look at the Energy Conservation for a System. So, when we apply first law of 

thermodynamics for a system, because we are talking about a flow system. So, the change in total 



energy of the system rate of change of total energy of a system is equal to 𝑄̇ which is the energy 

supplied to the system and 𝑊̇ which is work done by the system. So, we can see the simple balance 

that the energy that will be there in the system that will be equal to or the difference will be the 

change in energy of the system ΔE, the more familiar form of first law of thermodynamics is in 

terms of ΔE = Q - W. 

So, which is ΔE is the change in energy of the system that is equal to the energy that is being 

supplied to the system minus the work done. So, the energy being spent by the system to do the 

work, so that is why you see a - sign there. Now, when we talk about a flow system, it is going on 

continuously. So, in place of having a ΔE we will talk about in terms of rate. So, the rate of change 

of energy of a system is equal to rate by which the energy is being supplied to the system minus 

work done by the system. So, rate of work being done by the system. 

Now, this capital E the corresponding intensive property as I said is small e, which is called specific 

energy of the system. So, that will be dE = e dm. So, if you want to integrate it over the systems 

so E = integral over the system e dm. Now, this specific total energy of the system so, E is total 

specific energy of the system whereas small u is specific internal energy of the system. 

And remember probably this is the only lecture where we are talking about small u being the 

specific internal energy of the system, everywhere else we have used or we will be using small u 

as a symbol for x component of velocity. So, please remember that here u is specific internal energy 

of the system. It can be kinetic energy per unit mass, potential energy or per unit mass plus some 

other forms of energy that might be there. 

So, these other forms of energy can include the chemical energy caused by chemical reactions 

exothermic or endothermic reactions energy due to a nuclear reaction or electrostatic or magnetic 

field effects causing energy. So, most of the cases, almost all the cases that we consider in this 

course, eother or this contribution to total specific energy will be 0. Now, as we said that, the sign 

convention that we follow here 𝑄̇ is the heat provided to the system. 

So, this will be positive if heat is being given to the system. So, 𝑄̇ will be positive if heat is being 

given to the system and 𝑊̇ which is work done by the system is positive when work is being done 



by the system. So, if work is being done on the system, then 𝑊̇ will be negative, if heat is being 

taken away from the system or system provides heat to its surroundings, then 𝑄̇ will be negative. 

In some places, you might find that this sign between 𝑄̇ and 𝑊̇ is positive. So, in that case 𝑊̇ will 

be work being done on the system. So, now we have refreshed our memory in terms of the first 

law of thermodynamics or energy conservation for a system. So, let us apply Reynolds Transport 

Theorem to change this formulation to a control volume formulation. So, what we are going to do 

we are going to write the rate dE/dt for a system. We will right or convert this using Reynolds 

Transport Theorem, the formulation for a control volume and at a particular time when the system 

and control volume coincide, then 𝑄̇ and 𝑊̇ are same. 
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So, we write the Reynolds Transport Theorem in terms of general variable N, and substitute N is 

equal to E which is total energy of the system and intensive property η is equal to small e which is 

total specific energy of the system. So, we replace N/E So, dE/dt of system = integral 
∂

∂t
 integral 

over the control volume and η is replaced by e. So, e ρ dV that is rate of change of total energy of 

the system with time plus the energy that is coming in or going out through the control surface. 

So, area integral over the control surface e ρ V.dA. So, we use this in the first law of 

thermodynamics. So, dE/dt = 𝑄̇ - 𝑊̇ so we replace dE/dt of system = 𝑄̇ - 𝑊̇ and we have the energy 



conservation in the form of or for a control volume or in control volume formulation. Now, we 

will look some of the variations or some details about 𝑄̇ and 𝑊̇. 
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So Q 𝑄̇ is basically, it is heat being supplied or taken away from the system or it is being given to 

the system. So, it is heat transfer and heat transfer can be caused by conduction, convection or 

radiation effects. Because in this course, most of the times what we will be looking at is isothermal 

systems. So, we will not go in further details of it. Now the work so, 𝑊̇ can have the shaft work 

or work being done by a machine. 

So, that is the shaft work which can be work being done by a pump impeller or work being done 

by a fan blade or steam turbine or compressors. So, depending on the machine the shaft work can 

be positive or negative work being done on the fluid or work being done by the fluid. So, that will 

have, that will be the shaft work component. 

Now, the flow will be coming in or going out. So, there will be work due to pressure and work due 

to viscous forces. So, the pressure forces and viscous forces they will also contribute to the work. 

Now, these viscous forces can be normal viscous stress or viscous stress can have normal 

components as well as shear component or tangential components. In general, we will see that the 

normal viscous stresses are negligible. So, we will neglect them and most of the cases what we 

will consider is viscous shear stresses. 



So, if we come to work done due to pressure, so, or rate of work done due to pressure then we 

know that work is force dot product of displacement. So, if we write displacement as D and rate 

of work done will be equal to F.dS over dt. So, that will result in we can write this F.V. So, dS/dt 

is nothing but velocity. So, rate of work done is F dot, dot product of force and velocity. Now, this 

is the work done by the force and this force when we talk about pressure force this will be - pdA. 

If we talk about the small force, force on a small area dA, so, that will be equal to dot V. Now, this 

- sign is to take into account the fact that the pressure force will be acting opposite to the normal 

or outward normal to the surface. So, this is the work done by the pressure force whereas in our 

formulation we have work done by the system. So, the pressure work or rate of work due to 

pressure force that will be equal to negative or minus one times integral over the control surface 

this force. So, - p V.dA we can write dA.V = V.dA. 

So, that will be minus, minus will cancel out so we will have integral p V.dA that is the rate of 

work done by the pressure force. We can also write this in terms of V.n into the dA, which is the 

area of the surface, so where V.n is basically the velocity component which is normal to the 

surface. So, we can say the unit vector n is the unit vector normal to the surface. So, we can write 

in this form or this form. So, this is the rate of work done due to the pressure force. 
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Similarly, we can write rate of work done due to viscous stresses. Now, the rate of work done due 

to viscous normally stresses will be same as the rate of work done by pressure force except that 



viscous normal stresses will not have a - sign when we write force, force will be τ dA. Now, viscous 

stress we can write minus times integral over the control surface τ dA, which is the force dot 

velocity vector, this term is because of the work done due to the viscous stresses on the control 

volume. 

So, if we want to write the work done by the control volume, then it will be with a negative sign. 

So, τ is where τ is the shear stress vector. So, remember that we are talking about a particular 

surface dA, where we will have three components of stresses. So, at that particular surface, we will 

have a stress vector and on the surface you will have three components of stresses. So, it can be a 

viscous stress vector actually, because it will have a normal component and two tangential or shear 

components on an area dA. 

Now, when you have a control surface, which is coinciding with the solid surface or solid wall, so, 

on a solid wall we know because of no slip boundary condition velocity is 0. So, when the velocity 

is 0, then the rate of work done because of the viscous stresses will be 0, because V is 0 in this. 

At inlet or outlet, so on any control volume where the flow is coming in or going out. So, let us 

say this is your control volume and this is. Now if we choose a control volume in such a manner 

that the flow enters because most of the cases when we are solving a problem, we have the freedom 

to choose the control volume. So, if we choose our control volume in such a manner that the control 

surface that is the boundary of the control volume is normal to the inlet and outlet ports or normal 

to the inlet and outlets. 

So, in that case the normal vector to the area will be, the shear stress will be acting normal to the 

velocity. So, they will be perpendicular and the dot product will result in 0 viscous shear force. As 

I said earlier that the viscous normal stresses are often negligible for most of the flows that we are 

going to look into. So, we can neglect viscous normal stresses and for these two cases where the 

control surface is a solid surface or the flow enters normal to the area the velocity is normal to the 

control surface then on that surface the rate of work done by viscous stresses is 0. 
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So, with these three different components of viscous stresses, we can write down in the general 

formulation of energy conservation for a control volume. So, we can write 𝑊̇ is equal to the work 

done due to shaft, the work contribution due to the pressure force and the work contribution due 

to the viscous stresses or viscous forces. Now, we can take this term because we have a V.dA here 

and V.dA on the right side. So, we can try to combine this. 

So, we can rearrange it on the left side we will be left with 𝑄̇ - 𝑊̇ shaft - 𝑊̇ viscous is equal to the 

unsteady term plus integral over the control surface e ρ V.dA plus the work done due to the 

pressure force. So, this terms is brought on this side. Now, if we combine these two terms, so, take 

ρ and V.dA outside the bracket then we will have e + p over ρ. 

So, we can generally write this in this form or 1 over ρ if you remember from thermodynamics, 

which is often present and it is called specific volume. So, 1 over density is called a specific volume 

is commonly used in thermodynamics. So, this is e + pV if you look at this, this term is nothing 

but e + pV where V is  specific volume and what is this, this is called enthalpy h. 

So, in thermodynamics you might see this term being written in terms of enthalpy in general and 

pV is generally known as flow work. So, we can use this general formula to solve problems for 

energy conservation in a control volume. 
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Now, if we choose a small system which is a simple piping system, so, let us say you have a elbow 

where the flow is coming in at section 1 and it goes out at section 2, the gravity acts vertically 

downward on this. So, we can write down the conservation equation in this, now we can further 

expand or we can write that e = u + V2. So, specific internal energy plus kinetic energy and 

potential energy. 

If the flow is steady, which is generally the case for most of the problems, then this term will be 0 

and in this there is no machines. So, in this system there are no machines. So, the shaft work is 

also 0. Now, we can choose our control volume in such a manner. So, we can choose control 

volume coinciding with the wall and normal to the flow at the inlet and outlet ports. So, the shear 

stresses on the wall will be 0 and shear stresses or the work done because of the shear stress, not 

the shear stresses on the wall will be 0, but the work done because of the viscous shear stresses 

will be 0 on the walls and the work done because of the viscous shear stresses will be 0 on inlet 

and outlet ports because the control surface is normal to the flow entering. 

So, viscous work done due to the viscous stresses is also 0. So, we end up with 2 terms  𝑄̇ and the 

net flux of, net flow of energy. So, that 𝑄̇ will be equal to integral over the control surface e + p 

by ρ into ρ V.dA and if you notice V.dA is the volumetric flow rate into ρ which becomes mass 

flow rate. Now, you can substitute e = u + V 2 + gz. 
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And then we can take each take up each term for the separately and expand or evaluate these 

integrals. So, the V.dA will be because at the inlet it will be pointing, the area vector will be 

pointing outward whereas velocity will be pointing inward. So, it will be - 𝑚̇ the integral, whereas 

at the outlet it will be 𝑚̇ where 𝑚̇ is flow rate ρ into V into area of inlet 1 or outlet 2. 

So, we can simplify this 𝑄̇ = 𝑚̇ u2 - u1 plus, because of this term, we will get 𝑚̇ p2/ρ - p1/ρ and 

because of the gravity term 𝑚̇ g z2 - z1. This integral will have integral over the control surface V 

2 ρ v.dA. So, it will depend if the velocity at the sections are uniform, then we can replace  𝑚̇ into 

V2, V1
2 - plus 𝑚̇ into V2

2, but we will keep it in this form. 

So, when we solve later on in the course, when we look at the flow in pipes and solve the problems 

of flow in pipes or pipe networks, then we will use this equation and we will again come back to 

this equation. 
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Now, let us take a simple example. So, there is a turbine which is supplied water at a volumetric 

flow rate Q and the diameters of the pipe that supply and discharge water through this turbine, let 

us assume they are same. So, they both have these are d and the question is what is the pressure 

drop across the turbine if it delivers the 60 kilowatt of shaft work? So, let us draw that if you have 

a turbine and the flow is coming in, flow goes out from here. 

So, we can take our control volume, now when we write to the general equation for energy 

conservation for this control volume and try to see that what will be each term. So, first list down 

the assumptions, we assume that the turbine operates at steady state. So, the unsteady term will 

become 0, then we also assume that there is no heat transfer in the system so, 𝑄̇ = 0. We can neglect 

the change in internal energy of the fluid. So, there will be no change in u. 

So, Δu will be 0. So, that term can go and there is no change in vertical position between supply 

and discharge. So, z there will be no change in z at section 1 and 2. So, this term will also go and 

we integrate this term and the viscous work is 0. So, we can make viscous work 0 or by the choice 

of our control volume that the flow enters normal to the inlet and outlet. So, the viscous work is 0, 

so, this term is also 0. 

Now, we are left with 2 terms V2 into p/ρ. So, we can also assume let us say that the flow is uniform 

at the supply and discharge pipes. So, because the flow is uniform and the diameters are same, so, 

from mass conservation the velocity at the supply and discharge side will be equal that will be V 



which will be Q over pi/4 d2. So, that will be equal to V. Now, when we integrate or we do not 

need to integrate because the flow is uniform. 

So, this becomes ρ V.dA is mass flow rate and mass flow rate it is same at section 1 and 2. So, this 

term will also cancel out V2 because V1
2 and V2

2 are same and this will be multiplied by mass flow 

rate. So, this term will also cancel out and what we will end up with that minus shaft work that 

will be equal to V.dA is Q into ρ and because there will be a - sign at the inlet. So, V.dA will be - 

Q at the inlet so, you have - p1/ρ and at the outlet p2/ρ. So, you have minus shaft work = Q ρ p2/ρ 

- p1/ρ. Now, ρ and ρ will cancel out. 

So, you will end up with p1 - p2 = shaft work divided by Q. So, this is a simple example now. We 

will use the conservation of energy as I said for solving the pipe flow problems and one can also 

derive the Bernoulli’s equation from Energy Conservation. So, we will do Bernoulli equation when 

we talk about inviscid flows, but it can be derived from the energy conservation principle also. 

Let us stop here. Thank you. 


