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Macroscopic Balances: Mass Conservation 

In the last lecture we discussed about Reynolds Transport Theorem, which related the mass 

conservation and momentum conservation or what we derived it for any general variable 

which we called N, we could relate that control volume formulation with the system 

formulation whereas, the system is a entity which is a control mass, that is a fixed quantity 

of mass. 

Whereas, in fluid mechanics or in this course, we are generally dealing with a control 

volume approach where we have a control volume, a fixed region space or a specified 

region in a space through which the mass can come in and go out. So, the conservation 

equations, the mass conservation and momentum conservation, energy conservation or 

angular momentum conservation all those conservation equations we know in terms of for 

the system, from rigid body dynamics.  

So, what we are doing in this week or in this module is we learnt first that for a general 

variable N or an extensive property N and the corresponding intensive property η we 

derived the Reynolds Transport theorem, that how we can convert a derivative in the 

system form because all the equations we have dN/dt kind of term. So, how we can write 

that dN/dt in the system formulation, how can we convert into control volume formulas 

and now, we are going to apply this in this lecture for mass conjugation and then we will 

look at some examples.  
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So, let us recall the equation that we derived, the equation states, the Reynolds Transport 

equation that the rate of change of a extensive property N is equal to rate of change of the 

property in the control volume. So, subscript CV refers to N in the control volume and then 

plus integral over CS which is control surface η ρ V. dA. So, η is the corresponding 

intensive property which is N divided by mass or N per unit mass. So, couple of things that 

we have this plus sign because we assume or we have derived it that the velocity is outward; 

if velocity is inward then this sign will become negative and this velocity V is measured 

relative to the control volume.  
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So, let us try to apply this to derive the mass conservation equation. So, when we want to 

derive mass conservation equation, we will consider that N =M or mass and 

correspondingly η will become M over M, so which gives us 1, so η is 1 and N equal to 

capital M and let us substitute it here. So, N is replaced by M, so dM/dt or rate of change 

of mass in the system that will be equal to ∂/∂ t MCV.  

So, in place of N, we have now replaced with M, that is equal to integral over control 

surface, η =1, so it becomes ρ 𝑉. dA and we know that the mass conservation equation 

basically refers to that the mass in the system remains constant. So, that means the rate of 

change of mass in the system is 0, so we substitute that the value that we obtained or the 

expression that we obtained for dM/dt in this equation, then we will get the mass 

conservation equation, that dM/dt of our system =0.  
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So, that is mass conservation equation which simply states this, this is ∂/∂ t of M in the 

control volume written in terms of ρ and V. So, if ρ is varying in the control volume, then 

we can put an integral, so ∂/∂ t integral over the control volume ρ and integrated over V. 

So, remember here this V a horizontal line cut this is the symbol that we are using for 

volume, because we have another V here which is V vector and this is velocity.  

So, plus integral over the control surface which is the boundary of the control volume 

integral over ρ 𝑉. dA that will be equal to 0. So, this, the first term is rate of change of 

mass, so rate of change of mass within control volume ρ dV will be, when you integrate 

over the control volume, this will give us the mass in the control volume and its derivative 

with respect to time will be the rate of change of mass within control volume. And the 

second term gives us the net rate of mass flux or outflow through the control volume.  

So, or the net rate of mass outflow that is what we call the flow or the mass flow that is 

going out of the control volume is given by this term. Now, we can call this also as 

continuity equation, so mass conservation equation is also known as continuity equation. 

We can write this, taking this term on the other side, so if we want to say that net rate of 

mass inflow, so then we can say the rate of change of mass within control volume is equal 

to net rate of mass inflow. So, the negative sign represents that the mass is coming in, so 

that is pretty obvious when you think that in a box, the mass that will be present at any 



time, that will be equal to mass coming in minus mass going out, if there is no 

accumulation. 

If there is an accumulation, so the accumulation is equal to mass coming in minus mass 

going out. If we write that both the terms on one side, then we can say that the rate of 

increase in the control volume plus going out, so that will be equal to the net rate that is 

coming in. So, this equation is pretty simple to understand.  
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Now, if we consider a special case, that if the flow is incompressible, so we can treat ρ as 

constant. So, if the flow and the fluid is incompressible, then we can treat ρ as a constant, 

if ρ is constant then we can take ρ out of the integral sign in these places. So, ρ integral 

over the control volume or ∂/∂ t, so that is basically the rate of change of control volume 

plus ρ integral over the control surface area integral 𝑉. dA.  

Now, if the control volume does not deform, so if the volume in the control volume, volume 

does not change if it is the rigid volume, then ∂/∂ t of control volume will be 0, if shape 

and size is fixed. So, then we can write ∂/∂ t over the control volume is equal to 0. So, then 

you up with only one term on the left hand side, so integral over the control surface 𝑉. dA 

=0. 



And if the flow is uniform at the boundaries, so if over the entire control surface or 

wherever the flow is coming in or going out, if the velocity is same on an inlet or an outlet, 

then in place of integral you can simply write this in terms of summations, that summation 

over all the boundaries 𝑉. dA. So, we need to apply these equations depending on the case 

we have at hand.  
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Now, if we look at the, if the flow is steady or it is compressible. So, if the flow is steady 

that means, the density does not change with time, but it may be a function of a space, so 

ρ is a function of ρ (x, y, z) then we have the mass conservation equation and because the 

flow is steady and if the control volume is fixed, then we can have this term is equal to 0. 

So, you will have integral over the control surface ρ V.dA =0.  

If the velocities are uniform at the inlet and outlet boundaries, then integral you can turn it 

into summations. So, integral or summation over ρ V. dA =0, so summation means, you 

can have one boundary, two boundary or three boundaries you can write sigma over 1 ρ V. 

dA + ∑ + ρ1 ρ V2 . A2 and so on and sum it over to get the answer.  
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So, let us look at an example. So, this example states that blood enters in the mother tube 

at a flow rate, you have been given the flow rate and this mother vessel is bifurcated into 

two daughter tubes and the blood leaves the first daughter tube. So. let us look at the figure, 

the blood enters at this point and then this artery or you can say or a blood vessel it is 

bifurcated into two, so this is what is being referred to mother tube or mother vessel and 

then it has two daughter vessels, so daughter vessel 1, daughter vessel 2, the diameter of 

the daughter vessels are given, as well as what you have been given is the flow rate at 

which it enters.  

So, 1 centimeter3 per second, the diameters are also in centimeter and then it says the blood 

leaves first daughter tube at an average velocity of 1 centimeter per second, so the velocity 

here is 1 cm/s. Now, what we need to find out is the average velocity at this section. So, V 

at this, at section 3 is what is to be found, you can assume the flow to be steady and 

incompressible.  

So, we start with the mass conservation equation and in this mass conservation equation 

because the flow is steady, so we can take this out, the velocity is given as average velocity, 

so we can write and then ρ is a constant, so we can take ρ out and the equation will be 

integral over the control surface ρ V. dA =0, we can divide by ρ, so it V have integral over 

the control surface of V. dA =0, we can take a control volume or we can have the, so we 



can draw a control volume which is following the just outside the vessels and this surface 

will be a control surface.  

Now, the flow is coming in at three sections, section 1, section 2 and section 3. So, the flow 

is coming in or going out at these sections, everywhere else the flow is 0. So, when we 

apply this equation integral over control surface, we will have three surfaces, so integral 

over control surface 1 which is the section at one where the flow is coming in V. dA + V. 

dA at section 2, the exit of daughter vessel 1 and integral V. dA the exit of daughter vessel 

2 the section 3.  

So, V. dA the flow is coming in and the area vector is pointing out. So, V is pointing inward 

whereas A is pointing outward. So, you will get 𝑉̇ dA with a - sign, so you will have - and 

V. dA is basically the volumetric flow rate at section 1, the value we know. So, Q1 =1 

cm3/s, we write this in terms of letters, so Q1.  

Now, section 2, V. dA the flow is going out, so the velocity is outward, the area normal 

will also be pointing outward at the surface, so V dA will be positive, the area will be pi/4 

d1
2 and the velocity, mean velocity there is V1 which is equal to 1 centimeter per second. 

So, we know V1, we know Q1, we know d1. At section 3, again the flow of, we assume at 

least that the flow is going out, so if the flow is going out, then the area normal and the 

velocity vector they point in the same direction and the sign is positive. Area is pi/4 d22 

into V2, V2 is the velocity that is the mean velocity at the exit of daughter tube 2.  

So, let us substitute the values in because all the numbers are in terms of centimeters, so 

centimeter per second or centimeter3 per second. So, we can use the same units, Q =- 1 + 

pi/4 0.8 centimeter is d1, so 0.82, V1 is 1 centimeter per second, we also know d2 pi/4.62 

into V2. So, when we solve it, we can obtain the value of V2 which will come out to be 

1.76 centimeter per second. So, I suggest that you verify this value and check for yourself 

if this is correct or not.  

So, this is a simple example and you could have just used A1 V1 = A2 V2 or A1 V1 = A2 

V2 + A3 V3 to find this out. So, that will come out when you use this, basically this is a 

flow rate or volumetric flow rate, that is equal to the exit, the flow coming out from these 



two daughter tubes A1 V1 + A2 V2 that is equal to the total flow that is coming in. Now, 

suppose if this velocity the numbers would have been such that you get V2 is equal to 

negative, so that simply means that the flow is coming in from the tube 3 rather than it is 

going out.  
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So, let us look at next problem. So it talks that there is a plane which is drawn here and the 

velocity field is given by a vector V x𝑖̂ + y𝑗̂, so this is the velocity vector and it asks us to 

evaluate the volumetric flow rate. So, volumetric flow rate is nothing but the integral over 

the area of this plane V. dA. Now, we already have vector V, in such case or in this case 

what we need to find is the area vector dA first. So, to find volumetric flow rate, we need 

to calculate dA.  

So, if we take a small area on this plane, you can see that this plane we can take a small 

area which has dimensions dl and dy. Now, this can be projected, if you project this area 

on the two planes, you can project it on yz plane and you can have a projection on xy plane. 

So, on the yz plane if you project it, then the dimension will become dz, so dl basically the 

projection of dl on the yz plane will be dz. So, the area, the projection will be dz, dy on the 

yz plane.  



On the xz plane, sorry, xy plane the projection of dl will be dx, so you will get on the xy 

plane dx dy will be the length of this small area, where dx is the projection of dl on xy 

plane. So, we can write this area vector dA in terms of dy dz which is the projection on an 

x plane means, on x plane means the yz plane and its normal points in the x direction. 

So, dydz𝑖̂ + dxdy 𝑘̂, on the xy plane the normal to A, the normal vector to will be along the 

z direction, so unit vector k. So, we can write dA = dydz𝑖̂ + dxdy𝑘̂. Now, we know the area 

vector dA, so let us substitute V. dA. Other thing we will need is because we have taken 

an elemental area and its normal vector, but we will also need to relate when we integrate 

this, then we will need to relate x, y and z, so we need the equation of this plane.  

So, if we write down equation of plane because the plane that has intersects x, y, z planes 

at let us say the intercepts are a, b and c we can write the equation of plane =x/a + y/b + z/c 

=1, where a, b and c are the intercepts on x, y and z axis respectively. So, if we look at this 

plane at x axis, it intersects at this point where the intercept is 4 meter, so x/4, y axis it is 

parallel to y axis, so it never intercepts it, so you can say intercept is at infinity, so that term 

becomes 0, y y b, b is infinity, so y y b will become 0.  

And then you have the intercept at z axis at this point, so c is 3, so x/4 + z/3 =1 is the 

equation of this plane. Now, we can write down or substitute the values integral V. dA, so 

we can write in place of V x𝑖̂ + y𝑗̂ dot the area vector dydz𝑖̂ + dxdy 𝑘̂. Now, as we look at 

when we take dot product 𝑖̂ . 𝑖̂ is 1, 𝑖̂ . 𝑘̂ because they are normal to each other, so that will 

be 0, 𝑗̂ . 𝑖̂ normal to each other, so that product will be 0 𝑗̂ . 𝑘̂ the product will be 0, so we 

will have only one term where we have 𝑖̂ . 𝑖̂.  

So, that means, this term and this term, the product of these terms you will have inside the 

area, so xdy dz 𝑖̂ . 𝑖̂ is 1. And integral over the areas, so if we look at these over the plane, 

then the limits go from y =0 to y =5 and the other limit for z from z =0 to z =3, because we 

have xdy dz. Now, we know that x in terms of z can be written from the equation of this 

plane.  
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So, we can substitute that. So, let us write this we can write x =1 - z/3 multiplied by 4, so 

x/4 =1 - z/3 and x =4 into 1 - z/3. So, we can substitute this here and we will get integral z 

=0 to z =3, x is not a function of y, so we can integrate with respect to y straight away and 

we will get y which will be 5 - 0, if you put the limit, so we will get this 5 x, so in place of 

x we can write 4 into 1 - z/3 dz. So, when we simplify it 5 into 4 is 20, so we will have a 

20 integral 0 to 3 1 - z/3 dz.  

Let us integrate it, so that will be equal to 20 within bracket when you integrate 1 you will 

get z -, z when you integrate, so z2/2 and 1/3. So, z2/6 integral, sorry, the limits from 0 to 

3. So, 20 into and if you substitute the limits, so when you put z equal to 3 that becomes 3 

- z2/6, so 32/6 that means 9/6 and - 0.  

So, 3 - 9/6 which is basically 3/2, so 3 - 3/2 20 into 3/2 or 1/half times of 20 which is 30 

and unit will be, we have not been given unit here. So, we have been given the units in 

terms of meters and let us say that x and y in these are in meters and the velocities in m/s. 

So, if that is the case, then the answer comes out to be 30 m3/s. So, you can write the units 

here also, 30 m/s.  

So, what we need to look at here is when you have been given such a plane, the effort goes 

into finding out the unit normal vector and if we need to relate the x and y in such cases, 



then we need to do that a bit of vector algebra or a bit of geometry where we need to find 

the plane equations etcetera.  
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So, let us look at another example. We have already discussed what is a boundary layer, 

boundary layer is the layer near the wall in which the viscous effects are important. So, 

when you have flow over a flat plate as has been shown here, when the flow enters the 

uniform flow enters over this plate and because of the no slip boundary condition at this 

wall, the velocity at the wall will become 0 and there will be gradient in velocity inside the 

boundary layer, as you go over boundary layer the velocity becomes uniform, so it has 

uniform velocity.  

Of course, when this change is happening in the velocity profile, because the velocity here 

and here it is same, there will be some mass that has to go out of this control volume. So, 

a control volume a b c d has been drawn here and what we need to find is the mass that is 

going through, calculate mass flow rate across surface bc of control volume a b c d. So, let 

us say what we need to find is 𝑚̇ bc.  

Now, the velocity profile because this is at the section ab velocity profile is uniform or the 

velocity is same across all from 0 to y, whatever y we take whereas at section cd, we see a 



change in velocity, so this velocity has been given as a function of u/U =2 y/δ - y/δ2, where 

δ is at any location, δ is the thickness of boundary layer.  

At point d this thickness has been told that this thickness of boundary layer at point d is δ 

d, what we see here is two dimensional picture and the plate width which is normal to this, 

normal to the board is w. So, the area of the plate if we take, then the length multiplied by 

the width. So, let us apply mass conservation equation here, we write down the mass 

conservation equation in the form that we have just derived. So, ∂/∂ t over integral over the 

control volume ρ dV + integral over the control surface or the area integral ρ V. dA =0.  

Now, the flow is, we can assume the flow to be steady and we can assume the flow to be 

incompressible. So, density is constant, flow is steady, so we can take ρ is constant and the 

first term becomes 0. So, we end up with the simplified equation ρ V. dA =0 integrated 

over the control surface. We can take ρ out of the integral because the flow is 

incompressible. Now, what we can do, for this control volume a b c d we can expand and 

write down the flows or the V. dA term over each part of this control surface.  
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So, let us look at ab first, so if we look at ab the flow is coming in and the area vector will 

be pointing outward. So, the first term will be a negative, because the flow is coming in V 

and dA they are in opposite direction and so this term will give you ρ multiplied by U, U 

is the velocity and the area will be w into δ d. So, the area through which the flow enters 

is δ d and w which is the width normal to the board.  

Now, let us look at bc. So, bc is the surface on which we need to find mass flow rate, so V. 

dA is the volumetric flow rate, so we can say that this is the mass flow rate through bc and 

this is what we need to find. Let us look at the third surface cd, so the flow is going out, 

that is the velocity direction and that area vector will also be pointing outward, so we will 

have ρ, you can take ρ outside or inside, so ρ and velocity, so velocity is U/U we had been 

given.  

So, we have written this small u in terms of capital U into 2 y/δ at this particular location 

δ =δ d. So, we have written 2 y/δ d - y/δ t2 into w into dy, because the velocity profile is 

varying with the distance from 0 to y, so we will integrate it from 0 to y. 

Now, the last surface da, because this is wall and this is non porous, so the flow from this 

wall will be 0, so we have neglected this term. Now, we need to find out 𝑚̇. So, basically 

what we need to do is integrate from 0 to y and then rearrange the terms to find 𝑚̇. So, we 



take this term on the left hand side, which basically 𝑚̇ bc that is equal to, we take this term 

on the right hand side, the first term, so this will be positive ρ U w δ d and the second term 

or the term under the integration which is mass flow rate at section cd this will become 

negative, minus and we can substitute the limits for y.  

So, y =0 to δ d ρ w U all three of these are constant within bracket 2 y/δ d - y/δ d2 into dy. 

So, we can simplify this and when we simplify, we will get ρ U w δ d - ρ U w. And let us 

integrate, so when we integrate we will get 2/δ d into y2/2.  

So, we will get 2/δ d, both of them are constant and 2 y2/2, and 2 and 2 will cancel out, - 

1/δ d2 which is constant with respect to y, because δ d is varying with respect to x and when 

we integrate y2 we will get y3 over 3 and we can substitute the limits from 0 to δ d. So, 

what that will be equal to ρ U w δ d into so y2 that will become δ d2/δ d, so you will have 

δ d minus, substitute δ d in place of y, so δ d3 /δ d2 and divided by 3, so you will have δ 

d/3. 

And when you substitute the limit at 0, because of that the terms will become 0. So, you 

have this, ρ U w δ d minus this multiplied by ρ U w. So, if you look at what you get this ρ 

U w δ d - 2 δ d/3 ρ U w, so ρ U w δ d - 2 δ d/3 and if you solve what you get the final 

answer δ d - 2 δ/3 is δ d/3, so you will get ρ U w δ d/3. So, that is your final answer. 

Now, just, sorry, this has overlapped, so what you can see is how will the problem change 

if the plate is porous, so if the plate at ad is porous, you can think of because the flow rate 

at the surface ad will not be 0, so you will need to take into account the flow rate of surface 

ad also. 
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Another example say we are looking at gas flow from a tank, in chemical engineering 

applications as well as in medical applications you often have a gas tank and from which 

the flow is coming out or going in. So, if you look at this, a tank volume V and this has 

compressed air in it. A valve is there at the tank and this valve is opened and the air starts 

escaping, the mass flow rate of the air escaping =ρ into C, where ρ is air density in the tank 

and C is a constant.  

They suggest that the initial density, when the valve is opened, the density in the tank is ρo. 

So, what we need to do is develop an expression to find out the density change with respect 

to time, because when the gas escapes from it, the density which is if you take ideal gas 

law, if you assume the gas to be ideal ρ =PM/RT, so the density, pressure is going to change 

and because of that the density will change.  

So, then the next part is that you need to find the time required in which the tank density 

will drop to half its initial value. So, let us write down the conservation equation. Now, the 

density is not constant with respect to time, so this term will be nonzero now, and there is 

only one control surface through which the gas goes out. So, the density is not constant, 

with respect to time, it is changing with respect to time, but we can assume the density 

inside the cylinder to be uniform.  



So, over the volume, when you integrate over the control volume ρ is constant, so we can 

get ρ out of the integrals. So, ∂ ρ over ∂ t and when you do integral dV you will get the 

volume, so V ∂ ρ over ∂ t, this is the first term and the flow is going out, so this will be 

positive and if we write down in terms of mass flow rate, because we have been given mass 

flow rate. So, V. dA is flow rate or volumetric flow rate multiplied by density, so what we 

have is mass flow rate, so this term becomes 𝑚̇, so we can write V ∂ ρ over ∂ t + 𝑚̇, this is 

the equation.  

Now, we can substitute 𝑚̇ =ρ into C and take it other side, so what we could do is write V 

∂ ρ over ∂ t + C into ρ =0, or ∂ ρ over ∂ t =- ρ C over V. So, that is the expression for rate 

of change of density with respect to time, now we can integrate this equation and we will 

get this final expression.  

So, let us integrate it, we reshuffle it and we get ∂ ρ over ρ =- C/V ∂ t and we integrate, say 

initial density at time t =0, ρ =ρ 0 and then at time t it becomes ρ, so when you integrate 

you will get ln and you substitute limit ln ρ. So, ln ρ - ρ 0 or ln ρ - ln ρ 0, which you can 

write ln ρ over ρ 0, this =- C over volume of the tank into t or t - 0. 

So, when you write this in the exponential form you are going to get this. Now, you can 

find out the time that will be required for it to become 50 percent by substituting that ρ 

=ρo/2, so you write that ρ/ρo =half, so ln 1/2 =- (C over V)t or we can find ln half =- ln 2, 

so we can write t =(V ln 2) over C, that will be the time required for the tank density to 

drop to half of its initial value, sorry, so this has gone inside, I will just leave at that. 

So, what we have discussed today is we applied the Reynolds Transport Theorem to derive 

a mass conservation equation and then we have looked at four different problems that how 

we can apply the mass conservation principle or the macroscopic mass balance to solve 

problems and find the mass flow rates etcetera. So we will stop here. Thank you. 


