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Hi, this video is about disturbance models and PID. Some features of PID characteristics

and how this is helping in rejecting the disturbance is what we will look into this

particular lecture. And it is important to understand these disturbance models and how

PID is helping us in rejecting disturbance in order to apply in the practical systems. once

we know that this is a possibility of this kind of a disturbance, then accordingly the

control objectives can be set. If we look into typical nature of the disturbances, one is the

disturbance that is appearing at the input side and this is given by D.

The other is the noise which gets added at the output of the plant. So typically if the we

represent it in this way, the analysis is based on this particular representation, mainly

because the noise is prevalent at the output when you are measuring through the sensors.

Similarly, disturbance is prevalent at the input side because that's where your control

inputs you are applying. But in general, disturbance can be appearing at any other place

in the system block and this particular signal flow block diagram and so on. But we can

always understand and its analysis when it is prevalent at that particular place and look

forward for these summers being placed anywhere else and so on.

So the idea here is to see where in actual plants these disturbances or noises are prevalent,

and see what could do better in order to design the controllers for rejecting the same. If

we see where are the changes happening into the system. We happen to change this

particular signal set point. So this particular set point change is something which is

desirable. And it is typically needed in case of many applications.



So this is desirable factor. Fine. That is something the set point change needs to be

reflected at the output is what we would definitely want to. The load disturbance is

something that is appearing, as we said, at the input of the plant. This is typically a low

frequency signal.

And the measurement noise, which is typically appearing when we are taking the

measurements, is a high frequency signal. And that's the reason for the nomenclature

disturbance and noise. Just to distinguish that this particular signal is a low frequency

signal and we characterize it as a disturbance, measurement noise because it's a high

frequency signal. And these load disturbance and measurement noises need to be rejected

as compared to the set point changes that those are desirable factors, desirable changes to

appear. So typically the characteristics of disturbance, if you look at, we can say that

sometimes this can be set as impulse or it can have some kind of a step, changing steps

and so on.

And it could be a ramp or some kind of a sinusoid changing the frequency at a slow rate,

phase, frequency or amplitude at very low rates and so on. Whereas if I look at similarly

this particular look at the signal how the noise appears to be with respect to time, it is

changing very frequently. You can see the difference between the disturbance which is

appearing now and then at a very low rate as compared to the changes in the signal when

it is a noisy signal. So this is typically high frequency signal and represented as a spectral

energy and represented as a random variable. When we look at the PID control, the PID

control is given by the terms called proportional control, integral control, and the

derivative control.

And yes, the gain term is something what turns out to be common, and then we can

represent in terms of the integral time constant and the derivative time constant. Here, we

will try to understand this particular PID structure in a slightly different way. Now, let us

consider the proportional action. Now, what happens in case of the proportional action is

that if it is just the K times E of t, then error is never able to be 0 because if error is 0,

then U of t is 0. So in order to make this particular input non-zero when the error needs to

be zero, our desired part is the error should be zero because this is where the output signal

is equal to the set point value.



This is exact following of what the input is given and the set point is given and exactly

what I'm getting as an output. Now, if the error is to be made to 0, then this is not possible

with the help of the proportional control. And that is the reason let us consider some bias

to the input value given such that when there is E of t equal to 0, there is some constant

input being given to the platform. Fine. So this particular bias is nothing but we can

consider a nominal value, which is between some maximum input value, maximum and

the minimum input values and average of the same.

So this particular E of t becomes zero at a set point. All right. Let's see the effect of this

particular bias term. So we already know that I have the particular plant output X and I

can write the signal flow, signal values and so on and so forth. So X turns out to be KP

times U plus D because this is my plant gain is what we have.

That is in terms of the steady state gain. Output Y is X plus N, whereas X is equal to, we

already have said KP is equal to U plus D, and the controller output U is given by K

times YSP minus Y, where K is my proportional gain. KP is my plant gain in this, and K

is my proportional gain. And what we are applying is a proportional gain with a bias term

UB. when we substitute and resubstitute and bring the X in terms of the output YSP, we

get a neater form given by this particular equation.

Now, it is interesting to see, since this is an LTI system, this particular form is easier to

understand that the change in the input YSP and the change in the noise input are

opposite to each other because of the sign change and because the again term turns out to

be same. Whereas the bias term that we have added as the control output term has the

same effect, bias term which we have added as the term in the control input form has the

same effect as the disturbance term, okay? With this particular observation, we see that

what should be the selection for this loop gain k times kp. This loop gain turns out to be

giving a trade-off.

And if the noise is zero, the bias is zero, then it is desirable to choose a higher K times

KP, so that this term turns out to be almost unity and X follows your YSP. And at the

same time, higher loop gain means your disturbance term is getting rejected. Ub is

influenced same as the disturbance. And if n is not equal to zero, then we will not be able



to use a very large loop gain because then the noise will also be added into the output of

the plant. And therefore, there is a tradeoff between the higher selection of the loop gain.

Higher loop gain is desirable for reflecting this change in the set point, whereas if there is

a noise in the system, then higher loop gain is not desirable. And also we know that

system becomes normally unstable at high loop gain. So there's only a cap over there in

order to select a particular loop gain. So design of the controller, or the design of the loop

gain in this case, or a bias term in this case, will be dependent on which objective is more

important. Maximum loop gain is, of course, determined by the process dynamics, which

is coming up from the stability of the system and so on.

All right. It is possible that PID is not able to achieve all the control objectives, but what

is more priority is what we have to look at. All right. Let's look into a few more

observations from the proportional control here. When we have, let's say, the system is

very nice, it is disturbance and the noise and the bias term is equal to zero, then what

happens if I'm having varying values of K, the step response is particularly plotted in this

particular figure for a transfer function with three poles at minus one, multiple poles at

minus one.

So we can see that when I am increasing k value, this k equal to 1, we had a very large

steady state error. But as we increase k from 1 to 2 to 5, the steady state error is

decreasing. And this is where even the error plot is given. But as we increase k, there is

an introduction of oscillations. And with the increase and further increase in the

oscillations, the transients die out at a very later date, very later time, and the system

response becomes slower in this case.

Now, if this particular steady state error is given by YSP minus Y, which turns out to be

YSP by 1 plus K KB, so increasing the value of K is definitely decreasing the error. But

now what happens if my bias term UB is not equal to 0? Then this steady state error is

given by YSP minus K by UB. Now, for a zero steady state error, we will have to

consider giving UB equal to YSP by K. Let us see what comes up with the integral

action in this.



Now, integral action, the zero steady state means the process variable is equal to the set

point. Y process variable or process output variable is Y is exactly equal to the YSP. So

how is this getting achieved? Let's say there is a constant control input U0 at a steady

state given. And let's say this is corresponding to a constant error E0.

Let's assume that. We are assuming in this way. Now with PI control, what happens? PI

control is given by gain term, proportional term like this, and with an integral time

constant and an integral value. At a steady state, U0, which is the control input U0 which

is constant as we assumed here, is given by proportional gain times E0 plus E0 by TI

times T.

Now, this term is growing with time, which means U0 is not a constant. Our assumption

was that there is a constant error E0 and for which we are giving a constant error,

constant control input U0. So, this particular assumption is contradicting because now U0

is increasing with time. It means for an integral control, proportional and integral control,

we cannot have a constant error E0 if a constant U0 is given. We have already reached a

steady state means the constant control is given as U0.

It means E0 is definitely has to be zero in order to reach to this particular reach to the

constant control U0 value. All right. OK, let me go back to the previous slide. The idea

about this particular bias term added to the gain term is giving us more and more insights

how the integral action is taking place. So something like this bias term idea is very old

and it has been applied in very nice industrial control methods.

If I implement the PI controller with this particular way, you have a proportional term

coming out here and the integral control term is implemented like a low-pass filter in a

feedback loop. Of course, you can derive this particular signal flow. You will get that.

You will get a PI structure itself. Now, the advantage here is that this particular integral

term is appearing as a bias term. And this particular bias term is being driven by the

output U instead of a constant bias.

And this particular implementation is that's why I call automatic reset in in many

different industrial controllers that are available in the market. At the same time, digitally

also it is easier to implement because this term is representing your low-pass filter. So



any higher frequencies which are captured through the sensor measurements, this

low-pass filter is rejecting them automatically and it's getting added as an integrator. So

this particular structure of implementation is that's why is very, very popular for

implementing the PI term instead of simply a cascade form of proportional and integral

terms. Let us all further look into the properties of this particular integral action.

If I decrease the integral time constants from infinity to values equal to 5, equal to 2, and

then 1, what we observe here is that for ti equal to infinity, this is simply a proportional

action, and that is why we have a steady state there. For larger values of Ti, the output

response, output signal grows gradually and reaches to the final state in a very slow

manner. But for smaller Ti values, we can see that this particular one reaches the zero

steady state error or the final value very fast. After a certain time, of course, if we further

decrease the integral time constant, then it oscillates and then approaches this. Output

reaches set point almost exponentially with time constant TI by K times KP.

Let's understand what derivative action is helping us. Our objective with the derivative

action turns out to be improving the closed loop stability. And how? We have also looked

into that derivative action turns out to be giving you the predictions. So it is giving you

the faster actions.

When we, let's see how it is helping in the stability form. It's because of the process

dynamics. We take some time for the changes in the control to appear in the process

output. And therefore it is late in correcting for errors, but with the PD controller, we are

having some predicted process output and it is helping us in reaching to the final value

faster. Predictions are definitely made by extrapolating error by tangent to the error

curves, all right?

Let's see what is happening here in terms of the same transfer function with k equal to

three and ti equal to two. The derivative action in the PID control, how is it helping us in

reaching the final value faster? If we see this particular plot, we have the time derivative,

the derivative time constant TD equal to 0.1 selected, then 0.7 and then 4.5. For the TD

equal to 0.1, we were able to reach the final value with oscillations in certain time, but

with introduction of a little higher TD value to 0.7, we are able to reach the system output



final value faster. But beyond a certain point, the derivative action is giving some more

oscillations and some different kind of characteristics.

So there is an upper value of TD for which the system is going to behave for a particular

proportional and integral constant. So there's a further reduction in the settling time

possible with the introduction of derivative action. So this is exactly what I just said.

Increasing TD initially gives the increased damping, but later damping decreases and

then even the system response is no longer a sinusoid, but rather it is more oscillatory

even while approaching the final value. When we implement the derivative action, this is

one way of implementing it and in terms of the feed forward way and in terms of adding

the bias to the proportional controller.

So this is what is the PD block showing up. The forward channel, this one, is simply a

proportional control. And this part, which is implemented again with the low-pass filter,

is giving you the final form in the form of a PD controller. So, this transfer function turns

out to be equal to ST by 1 plus ST which already has a low pass filter kind of a system

already available. So, the derivative actions are notorious to pass the noises which are

high frequency noises and that is going to give us a lot of trouble and that is the reason

derivative action is typically used with the low pass filter.

And this is a kind of implementation is very, very, very popular again in the industry.

Further alternative representations for the PID control implementations are discussed

now. What we have is in the form of controller given by the proportional gain, integral

gain, and the derivative gain. Standard or the non-integrated interacting form of the

algorithm implementation is very straightforward, which is given by simply the

summation of proportional, integral and derivative term and which gives you the c

control input to be given to the system or the controller output U in terms of the error E.

Whereas the series or the interacting form is also common or is also called the classical

form of it, where we have this particular derivative term being implemented as a

feedforward term along with that PI term as a bias term.

And here what we get is a multiplicative form because here is a cascade of PD and the PI

form. It turns out the controller can be represented, is given by the gain term multiplied



by proportional and integral term and proportional and derivative term. All right, so your

problem is to now represent K, TI, and TD in terms of K prime, TI prime, and TD prime.

What are these? K, TI, and TD are the standard or the interacting form of this.

One can always convert it in terms of K prime, TI prime, and TD prime. What is this

exercise is helping us in understanding is that when we write this, again, opposite can

also, the vice versa can also be written and we can find the condition between Ti and Td

now. Now, with this we should be able to say that okay when we have the transfer

function of non-interacting form we will be able to find the condition when we it has

complex zeros and the complex zeros are useful for controlling the systems with

oscillatory modes. So the systems which are the secondary or second order systems and

has oscillatory modes prevalent, then we should be able to find its solution in terms of the

non-interacting form. And this particular exercise will help you in understanding that

when we do this, then complex zeros automatically appear and the complex zeros with

the system poles, complex poles, we can have some kind of cancellations happening and

we will be able to do the PID control of oscillatory systems.

The next exercise will help you to say that, okay, series form has interpretations and

frequency domain as well. When we find its zeros and we will be able to show that they

are real valued. Okay, then if I consider this particular series form and represent its

parallel form, is it introducing complex videos? Do this exercise. When you write this

K,TI,TID in terms of K prime, TI prime, TD prime and vice versa, you will be able to

interpret these results which are given in the last two bullet points.

If we look into the interacting versus non-interacting form, each control loop has its own

structure when we have the interacting form. So when both I and D terms are present,

then these structures are different. And both forms can be implemented in terms of

proportional, proportional integral, and PD control as well. But one has to look into

whether I'm implementing an interacting and non-interacting form typically to address

these oscillatory modes and so on and so forth. That's all for this.

Next we will look into, next video is talking about the tuning methods for the PID

control. Thank you. Thank you.


