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LECTURE 52 : Non-Newtonian Fluid Flow Cont. 

 

Friends, welcome back. So, in the last class, we looked at different kinds of non-Newtonian 

fluids and how they behave under shear stress and shear rate conditions. Now, we will be 

looking again at the flow of non-Newtonian fluids through the pipe, okay? So, here So, 

non-Newtonian fluid flow in pipes. So, this is very important because many food industries 

are mostly involved with the flow of fluids in pipes. 

 

 



So, now we will focus on how to derive the velocity profile and the pressure drop equation 

because, ultimately, the pressure drop equation gives us an idea of how much pumping 

power is required. And the velocity profile gives us, you know, finally, if you look at what 

could be the temperature distribution within the pipe when the fluid is flowing in the 

processing industry, okay? Let us first consider laminar flow in a circular tube. So, here we 

have a pipe valve. We have a pipe wall over here, this one. 

 

 

So, this is actually a pipe, and the fluid is flowing through this pipe, okay? It is a circular 

cross-section. Now, you have to remember this is a pressure-driven flow. So, over here at 

this upstream end, we have a pressure of P1, and here we have P2 towards the downstream. 

Now, P1 is 

P1 is greater than P2, ok. So, we have a pressure over here, and when the fluid flows through 

the pipe, there will be frictional losses. Now, we want to calculate how much pumping 

power is required to overcome that. Now, the pressure gradient over the length of the pipe 

in the differential form can be written as del p / del x, and if we look at the final expression, 



it is P2 minus P1 divided by x2 minus x1, which is actually constant. Now, you have to see 

P2 is again, you know, less than P1, ok. 

 

So, we will have a negative pressure gradient over here in order to get P1 minus P2, ok. 

Now, these circular tubes, if you imagine this one in a cylindrical coordinate system, ok, 

the circular tube. So, we have a circular tube. That means it is a cylindrical coordinate. So, 

that means we have in the radial direction one, axial direction—let us say in the z-

direction—and another one is the azimuthal angle, which is theta. 

 

So, when we have the fluid flow through the pipe, we have to consider the flow in all three 

directions. So, that is actually r, theta, z. Let us say we want to get the locations over here. 

Here, let us say this is point P; it can be written as r, theta, z. Ok. The cylindrical coordinate 

system, ok, it is a model, it is modified as r, theta, z system, ok. 



 

Now, for our analysis, so instead of z, so this is the axial coordinate ok, we will be using x 

ok from now on all right. So, constant pressure gradient is applied in the x direction ok and 

this tube has the diameter of d equals to 2 r ok. So, that is our prior assumption Now, what 

would be our assumptions when the fluid is flowing through the pipe? So, perhaps you 

have learnt, but I want to make sure that ah when I will be ah slowly moving to the the 

non-Newtonian ah flow type. 

 

So, this kind of ah background is little bit required. So, that is why I prefer to have this one 

ah to discuss over here. The pipe is infinitely long in the x direction. So, in the x direction 

the pipe it infinitely long ok. so that we can ignore the you know effect of ah entrance effect 

over ok. 

The steady flow all the partial time derivatives are 0. So, steady flow means any parameter 

or the things are changing with respect to time ok it is becoming 0. Now, the third 

assumption is the parallel flow. So, parallel flow means the you know there is no flow in 



the radial direction the parallel flow is like that ok. So, r component of the velocity equals 

to 0. 

So, u equals 0, the r-component of the velocity equals 0. The fluid is incompressible and 

Newtonian with constant properties. So, we will first start with the non-Newtonian nature, 

and from there, we will go further with the non-Newtonian, okay? So, if I do not explain 

this, how does this come with the Newtonian part, okay? In this aspect, you will have a 

little problem understanding the non-Newtonian. So, of course, you have learned, but it 

will be good to recall what you have learned in the past, okay? 

The flow is also laminar. So, of course, you already know this term: a constant pressure 

gradient is applied in the x-direction. So, that means there is a P1 minus P2 divided by 

across this, you know, length that is divided by L, okay? L is the length of the pipe, let us 

say, that means x2 minus x1, okay? The velocity field is axisymmetric with no swirl, that 

means there is no swirl like this, okay? 

So, the theta component of the velocity is 0, and the partial derivative with respect to u is 

also 0. Since this is a pressure-driven flow, we will ignore the effect of gravity. So, with 

this assumption, now we will look at how to derive the pressure-drop relationship, okay? 

Now, here, the very basics are the Navier-Stokes equation for the cylindrical coordinate 

because we will derive it from here, okay? You can, of course, go through the past slides; 

you can look at it. 

 

So, this one the first one is the r component of the Navier-Stokes equation, this one is the 

theta component. and finally, we will have the z component. So, for our case since as I said 

the fluid is flowing in the we are considering in the x direction. So, here we have P1 and 

we have P2 ok. So, instead of z we will be using x ok in the x direction ok. 



 

Now, also we need help of the continuity equation in the cylindrical coordinates. So, here 

the cylindrical coordinate continuity equation is del rho del t plus 1 by r del del r of r rho 

vr plus 1 by r del del theta of rho vtheta del del z of rho vz. So, you can understand over here 

is the z component or you can say over x component ok. It will be the x1 here this is in the 

theta and this is the in the radial direction ok. So, this is equals to 0. 

boundary conditions. Now, boundary condition is very much important in order to get the 

solution ok. So, what are that boundary conditions? See the boundary conditions comes 

from the physical interpretation of the what you are actually observing. So, fluid is flowing. 

 

So, let us draw it over here, ok. So, the fluid is flowing, ok. Now, this one is R, capital R. 

The variable one is the smaller. That means, as you progress or as you move from the center 

line of the boundary towards the wall of the tube, ok, the variable is the smaller, ok. 



 

D equals to 2R. Now, what is boundary condition 1? Here, it is said that there is a no-slip 

condition at the pipe wall. That means, the fluid is moving like this. At the pipe wall, the 

fluid comes to a complete stop. 

That means, there is no velocity of the fluid. The layer that is touching the surface of the 

internal wall of the So, that means, when r equals to small r, u equals to 0, it is called the 

no-slip condition. Now, another one we will make at the center line, ok. So, this is actually 

a symmetric structure, ok. 

 

Now, at the center line, what we are saying is the axis of symmetry over here. So, no fluid 

crosses the plane. Sometimes, it is also known as the no-flux boundary condition. No-flux 

boundary condition means here at r equals to 0. So, r equals to 0, del u / del r equals to 0. 



 

So, no-flux boundary condition means this is actually acting as an impermeable surface, 

and this part is basically a mirror of this one. So, at r equals to 0, del u / del r equals to 0. 

So, this boundary condition will be handy for deriving the equations. Now, if you look at 

the continuity equation, okay. So, if you have a look at it. 

So, this is 1 by r del del r of r ur plus 1 by r del del theta of utheta plus del u / del x. So, 

over here, okay. So, of course, it is a steady state, meaning this one will be 0, steady state 

okay, that is what we are considering. And 1 by r del del r of r rho vr. So, when we are 

saying incompressible and steady flow, we can take the rho out, okay, we can take the rho 

out. Now, what was assumption 3? It is a parallel flow, you remember. 

 

So, the radial component will be 0 ok, the parallel, it is a parallel flow, that means, ur equals 

to 0. ok. And also the utheta wall also we have considered 0. So, in those cases, so if you 

apply this, this is for the assumption 6, if you apply them then we will be left with only this 

part del u / del x equals to 0 ok. Now, del u / del x equals to 0 means 



 

So, if you want to remove this partial differential part that means, u has to be something 

that is u equals to u is a function of r only. That means, you cannot see if del u / del x equals 

to 0 that means, it is constant with the respect of the x. Now, if you visualize so, we are 

talking about the fully developed flow ok. Now, if you have the fully developed flow I will 

draw it over here let me see some spaces So, we will also see. So, we will have the fully 

developed for laminar profile looks like this ok. 

So, laminar profile looks like this. Now, the velocity profile develops over the radial 

direction. So, let us take this is in the x direction and this is r direction. So, here let us say 

let us take this point. 

 

Now, at this point, if you move along the x, so let us say small r, if you move along the x, 

the velocity is not changing; it remains constant. But if you move along the r, you take a 

fixed x; if you move along the r, the velocity is changing because there is a velocity gradient 

due to the viscosity effect. So, that is why u is a function of r only. Now, coming to the 



next part, we will go through the simplification of the momentum equation, ok. So, this is 

the momentum equation. 

 

 

So, rho multiplied by del u / del t plus ur del u / del r plus u theta by r del u / del theta plus 

u del u / del x equals minus del p / del x, this is the pressure gradient. rho gx we will ignore 

the gravity, plus this is the viscous term, ok. If you apply all the assumptions, del u / del t, 

that means steady, we will make it 0. Assumption 3, no radial part, ok, the ur equals 0. 

Assumption 6, u theta equals 0; here it is coming from the, if you go back, it is coming 

from the continuity equation, ok. 

del u / del x equals 0. Now, we will be left with minus del p / del x. We will ignore the 

effect of gravity. Same thing over here. Now, this part will be over here. Now, what we 

will be having? 



 

1 by r d dr of r multiplied by du / dr equals to 1 by mu del p / del x. Now, what we have to 

do? We have to integrate it. So, what we will do? Let us see we will do it over here. 

 

So, what we can do that we can write this one as a d dr of r du / dr equals to r by mu r by 

mu dp / dx. Now, r du / dr equals to r square by, so we will have to integrate 2 mu dp / dx 

plus C1, it is a constant. It is a constant. So, r du / dr equals to r goes over the r square by 2 

mu dp / dx plus C1. 

So, if you further do it du / dr equals to r by 2 mu dp / dx plus C1 by r. Now, what would 

be the u? So, u will be again r square by small r square by 4 mu r square by 2 dp / dx plus 

C1 ln r plus C2. So, this is this one we have over here u equals to r square by 4 mu dp / dx 

plus C1 ln r plus C2. Now, how to get this C1 and C2 value? 



 

 

We have to apply the boundary conditions, ok. If you remember, we have discussed it, ok. 

So, if we apply those, ok. So, we will be able to get the values, ok. So, if you look at it, u 

equals to. 

 

So, if you have the boundary condition, ok. So, I will just So, at r equals to capital R, you 

will have u equals to 0, and at r equals to 0, you will have del u / del r equals to 0, ok. So, 



if you do it, if you apply the boundary condition, you will be able to get the velocity profile 

for the Newtonian fluid in the laminar flow region. This part you have looked at. 

Now, we will move to the part that we will not cover here. So, since you have already done 

it, now we will move to how it looks like for the non-Newtonian one, ok. Now, what is the 

purpose? We want to use this for the non-Newtonian one. We want to use this one, ok. 

 

 

Now, how to do it? So, now for the non-Newtonian one, So, for the fully developed laminar 

flow, the non-Newtonian one. So, if you look back from here. So, r du / dr equals to r 

square by 2 mu dp/dx plus C1. 



 

So, if you apply this boundary condition, eventually you will get C1 equals to 0, ok. Now 

finally, this one will yield to this equation: r du / dr equals to r square by 2 mu multiplied 

by dp / dx. So, here this one So, r du/dr equals to r square by 2 mu dp/dx plus C1 equals to 

0, ok. Now, what we will do? 

We want to get some relationship with the tau. Tau, what is tau? Tau is the shear stress 

acting on the wall, ok. That is, we denote it as the tauw in generic term; tau is the shear 

stress, ok. So, what we have to do? 

 

So, what will we do? So, you have du/dr equals to r squared by 2 mu dp / dx. du/dr will be 

small r by 2 multiplied by dp / dx. This is very clear, ok. So, now, we will multiply both 

sides. So, once you have both sides by mu, mu du/dr equals to, so that means, your mu will 

be omitted over here. 



 

So, r by 2 dp / dx, ok. Now, if you look at it, remember what our relationship was: tau 

equals to mu du / dy. Now, what will we do? Put y equals to R minus small r. So, dy equals 

to minus dr. That means, when you have the relationship tau equals to mu minus du/dr. So, 

we are moving in this direction. 

Ok. We are moving in this direction; you see the velocity is going down, ok. So, we will 

finally have this negative velocity gradient, ok. Now, once we have mu du/dr, we will put 

a negative sign equals to minus r by 2 dp / dx, ok. So, this one will give you tau. 

Here we will have r by 2 minus dp / dx. See, the r cannot be negative. So, this is the 

negative. So, dp / dx is negative over here to make it the positive value when the overall 

value comes. It is actually P2 minus P1 because, see, from upstream here it is P1, here it is 

P2, ok. So, when the flow is occurring in this direction, ok, the pressure is decreasing. 

 

So, that is the significance over here. So, minus dp / dx is given, ok. So that means, tau 

equals to r by 2 minus dp / dx. So, if we integrate this one, integrating dp equals to 2 tau 

by r dx from x1 to x2, here we have P1 to P2. So, if you integrate it, 



 

So, what we will be having is dP means, so, upper limit minus lower limit P2 minus P1. So, 

the negative will be adjusted. So, you will have P1 minus P2, that is denoted as delta P. P1 

minus P2 equals to 2 tau by small r multiplied by capital L. So, let us say x2 minus x1 equals 

to capital L, that is the length of the tube. Length of the pipe. So, we now have this 

relationship: tau equals to delta P r by 2 L. Now, we will exploit this one. 

How? Now, for a non-Newtonian fluid, you know that is how the relationship looks like: 

tau equals K multiplied by minus du/dr to the power n. What will we do? See, this is also 

tau; this is also tau. That means this also equals delta P by 2L multiplied by r. What are we 

interested in? At first, we are interested in the velocity profile. From there, we will go to 

the pressure drop calculation, okay? 

 

So, how do we do it? So, let us see, okay. So, K multiplied by minus du / dr equals delta P 

by 2L multiplied by r, okay. Now, we want to have this du out, okay, so to the power n. 

So, if you look at it, du / dr equals delta P by 2KL 



 

Let us put n negative multiplied by r. Now, from here, if you want to have du / dr equals 

delta P by 2KL to the power 1 by n, r to the power 1 by n. So, negative sign. Now, what 

will we do with u? So, u means, in order to get u, we have to integrate. So, delta P by 2KL 

by 1 by n to the power 1 by n, r to the power 1 by n dr. So, du. So, negative. So, let us 

integrate. 

Now, what would be the limit? See, you are having flow. Okay, so this is capital R. OK, 

and here we have, say, r is changing. It is a variable, OK? It is a radial direction. Fluid is 

flowing, flowing like that. So, at small r equals to capital R, you will have a complete stop. 

That means u equals to 0, and at some location r, it will have some velocity, let us say u. 

So, then what we will do, OK? 

 

We will put 0. We will follow this one. So, at small r equals to capital R, u equals to 0. 

Here, u equals to u at r equals to small r. So, we can write this one. So, that means, so u 

equals to, so I will rather we will go from to this side. 



So, we will go to this side. So, minus u equals to delta p by 2kL to the power 1 by n. So, if 

you integrate this one, you will have r to the power n plus 1 by n. So, x to the power n dx, 

x to the power n plus 1 by n divided by n plus 1 by n. So, if you have this from, I mean, if 

you have x to the power n, that means x to the power n plus 1 divided by n plus 1. So, we 

will have over here n plus 1 by n. We will have small r to, no, we have capital R. So, we 

have capital R and here it is small r. 

Now, if you rearrange this one, we will get, let us say u, we will adjust a negative sign, 

delta p by 2kL to the power 1 by n. So, n plus 1 will go out. Then what will we have? See, 

it is supposed to be upper limit minus lower limit. So, when the negative sign is adjusted, 

we will have r to the power n plus 1 by n plus 1 by n minus r to the power n plus 1 by n, 

ok. 

So, we can take this capital R out; we can have a different form also, ok. So, that means u 

is a function of r here. So, u will be delta P by 2kL to the power 1 by n multiplied by n by 

n plus 1, multiplied by here in the parenthesis we will have capital R to the power n plus 1 

by n minus small r to the power n plus 1 by n. Now, this will give us a parabolic profile. 

So, in the center at r equals to 0, you will have the max, that means velocity is maximum, 

ok. 

So, maximum velocity occurs at small r equals to 0. So, therefore, umax will be, so you 

will put small r equals to 0, that means n by n plus 1 delta P by 2kL to the power 1 by n 

multiplied by r to the power n plus n plus 1 by n. So, that is the u max. So, now we have 

the knowledge of umax. Now, how do we calculate the average velocity? 

So, average velocity we will calculate using this formula. So, vaverage equals 2 by r square 

integral of 0 to r, ur r dr. Now, let us have a look at what we have learned so far. What we 

had looked at in this particular topic of the lecture is the velocity profile of a non-Newtonian 

fluid, that is, a non-Newtonian fluid flowing through a pipe, ok. We have taken help from 

the Navier-Stokes equation and the continuity equations, and we made a few assumptions, 

ok. So, the assumptions are that when the fluid is flowing through the pipe, 

under a constant pressure gradient. There is no net flow in the theta direction, meaning 

there is no swirl, and the flow is parallel, ok. The r-component of the velocity, ur, equals 0, 

and the flow occurs only in the axial direction, ok. We have also ignored the effect of 

gravity, ok. With these assumptions, we derived a shorter version of the momentum 

conservation and continuity equations. Using these and the boundary conditions, we 

obtained the velocity profile. 



Now, you see, we have the velocity profile here, ok. As I said, it is a power law in nature, 

ok. Here, n is the flow behavior index. Now, you could have, for example, Newtonian flow, 

ok. 

For the Newtonian flow, n equals 1, which means k becomes the viscosity, ok. So, if you 

set n equal to 1. So, you will see what you get for the Newtonian. So, n equals 1 by 2, ok? 

Delta P by 2 k L multiplied by r to the power 1 plus 1, which means 2 divided by 1. So, 

that is capital R square. 

 

So, that gives us the Newtonian nature. So, it is a very generic one. When you set n equal 

to 1, you will get the non-Newtonian, and if you set n equal to 1, you will get the velocity 

profile of the Newtonian fluid, ok. So, this is very basic and simple. So, we will stop here. 

Thank you. 


