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Good morning, my dear friends, students, boys, and girls. We have seen in the previous 

class that it was not that easy, unlike the flow through pipes, which is much simpler than 

this. What is the distribution of velocity and the distribution of shear force? In the liquid 

which is moving through an annulus like this, right? So, we have found out the velocity 

distribution, and we have also found out the shear stress or momentum flux distribution 

under this condition. 

What is the condition? That is, at which point the velocity profile becomes maximum or 

the shear stress becomes minimum? That is not known. Yes, it is known that velocities are 

0 at r is equal to K R and r is equal to R, capital R, right. Since we do not know, we have 

taken an arbitrary plane, like lambda R, which is like this, as it, and we found out, 

obviously, the shear stress and the velocity distribution vz in the shear momentum, right. 

 

There are certain things to remember for this: that is, when k is 0, the equation for velocity 

reduces to the one for flow in a circular tube, and this is called the limiting case, right. 

Then, the maximum velocity is vmax equals to vz at z is equal to lambda R. And that is on 



simplification and rearrangement. We can say that this maximum velocity can be said to 

be Pin minus Pout into R square by 4 mu L. So, this into 1 Minus 1 minus k square by 2 mu 

into 1 by k. 

 

The maximum velocity, as we can see, is vzmax at vz when r equals λR, which is (Pin - 

Pout) * (R² / 4μL) * (1 - (1 - k²) / (2 * ln(1/k)) * (1 – ln (1 - k²) / (2 * ln(1/k)))). This is the 

maximum velocity. The average velocity, as mentioned earlier many times, is nothing but 

the area-wise distribution, and the accumulation of those distributions is taken and 

expressed in the numerator between 0 to 2π. And between kR to R, the integration of vz * 

r * dr * dθ, this whole thing is the terminology, and r * vz * dr * dθ, right. Between kR to 

R, vz * r * dr * dθ, over 0 to 2π, the entire area between 0 to 2π, kR to R, where this 

integration is done between r * dr * dθ. 

 

This, on simplification, we can write as (Pin - Pout) / (8μL) * R² * ((1 - k⁴) / (1 - k²) - (1 - k²) 

/ ln(1/k)) is the vzaverage. For the average, we have said, over the section, the entire section, 

the velocity distribution over the section, again divided by the area. So, that we have also 



taken into this, right. So, the average velocity we have found out to be (Pin - Pout) / (8μL) * 

R² * ((1 - k⁴) - (1/k²) - (1 - k²) / ln(1/k)). And the volumetric flow rate is that is, Q = πR² * 

(1 - k²) * vzaverage, where Q = π * (Pin - Pout) / (8μL) * R⁴. 

 

 

times ((1 - k⁴) - (1 - k²)²) / ln(1/k), right. The volumetric flow rate is like this: Q = πR² * (1 

- k²) * vzaverage is a diverge, where it is solved in this way that this is equal to π * (Pin - Pout)  

* R⁴ / (8μL) * ((1 - k⁴) - (1 - k²)²) / ln(1/k). So, this is the volumetric flow rate. The other 

terms, like the force exerted by the fluid on the solid, is equal to the sum of the forces acting 

on the inner cylinder and outer cylinder, and that can be found out as Fz = -τrz at r = kR. 



 

 

into 2 pi R L plus tau r at r is equal to R into 2 pi R L. So, the whole thing is equal to pi R 

squared into 1 minus k squared into Pin minus Pout. This is how we can find out this force 

distribution. Now, as we say every time in every section, unless we have some problem 

solved, the grasping of the subject does not occur. So, we are bringing one problem for 

solution in this section, which is like this. 

 



 

A sphere is allowed to fall from rest in a viscous fluid. The rate of fall of the sphere in the 

fluid can be measured at steady state. Derive a relation to get the viscosity of the fluid. 

Now the sphere will accelerate until it reaches a constant terminal velocity, but before that, 

let us again tell what the problem is. So, a sphere is allowed to fall from rest in a viscous 

fluid. A viscous fluid is there in which a sphere is allowed to fall. 

The rate of fall of the sphere in the fluid can be measured at a steady state. So, derive a 

relation to get the viscosity of the fluid. So, this indicates that in the earlier case, which we 

said, if you remember that, coaxial cylinders rotating, one is fixed, another is rotating, and 

we said that this principle is useful for measuring viscosity. Measuring viscosity using 

Brookfield viscometer, that one, which is utilized to measure viscosity using Brookfield 

viscometer. 

The similar technique that two coaxial cylinders, One is fixed and the other is rotating, 

right. You can use the inner one fixed, the outer one rotating, or the outer one fixed, & the 

inner one rotating, either way. Here also, this technique can give you a means of measuring 

the viscosity of a fluid. 

For that, what are you doing? You are dropping a ball or sphere. So, it is falling from rest 

in a viscous fluid. So, it was at rest here, now it drops, started through the viscous fluid. 

The rate of fall of the sphere in the fluid can be measured at steady state. So, you are asked 

to derive a relation to get the viscosity of the fluid. It is not complicated, so it is very easy. 

Only the thing you need to know is that whenever you are depending on some pictorial 

view, that view must be taken very properly. Similarly, here also, we are saying that it is 

falling freely or from rest. 



So, that has to be maintained explicitly, and the conditions of the falling of the ball must 

be maintained, okay. Now, for its solution, if we take. the sphere will accelerate until it 

reaches a constant terminal velocity. So, its velocity will continue to increase until it 

reaches a constant terminal velocity, right. So, on their side, 

the sum of all forces acting on the solid ball includes gravity, which acts in the direction of 

the fall. The buoyancy force and the force due to fluid motion act in the opposite direction. 

Obviously, buoyancy acts like this, and the fluid moves like this. So, they are acting in the 

opposite direction, right. So, the force of gravity on the solid ball acts in the direction of 

the fall. 

And the buoyancy force and the force due to fluid motion act in the opposite direction. 

Next is that we can write, that four-thirds pi R cube into rho g, rho solid into g, right, s is 

for solid. So, four-thirds pi R cube into rho g, is equal to four-thirds pi R cube into rho into 

g, plus 6 pi mu vt R, so, this takes care of all the terms. 

 

I repeat, 4/3 π R³ ρₛ g, right, that is equal to 4/3 π R³ ρ g plus 6 μ π vₜ R. So, R is the radius 

of the sphere. and ρₛ is the density of the sphere, mind it, density of this sphere. If you put 

a plastic ball, it will not go; it will float. So, you have to take accordingly the density, 

right. R is the radius of the sphere, ρₛ is the density of the sphere, and ρ is the density of the 

liquid or fluid, vₜ is the terminal velocity. So, therefore, we can write μ is equal to 2 R² (ρₛ 

− ρ) g / 9 vₜ. I repeat, So, from the earlier relation we have, we have equated that 4/3 π R³ 

ρₛ g 



 

is equal to 4/3 π R³ ρ g plus 6 π μ vₜ R. Obviously, R is the radius of this sphere, ρₛ is the 

density of this sphere. ρ is the density of the liquid or fluid, and vₜ is the terminal velocity. 

Therefore, μ is equal to 2 R² (ρₛ − ρ) g / 9 vₜ, which is valid for Reynolds number, NRe, less 

than or equal to D vₜ ρ / μ, 0.1. So, valid Reynolds number is D vₜ ρ / μ, where it will be 

less than 0.1. 

That is the primary thing, which you have to maintain: that the Reynolds number, the 

variation of the Reynolds number, is less than 0.1. Only then can you write mu is equal to 

2 R square. rhos minus rho, where rhos is the density of the solid, and rho is that of the 

fluid, then this is D vt rho by mu, which is less than 0.1. So, what I would like to highlight 

here is that we are getting a technique by which the viscosity of a fluid can be determined. 

And it is a very, very easy process, as you have seen that you do not need many things to 

do, right, you do not need many things to do. What do you need? You need the property 

values, both for the solid and the liquid, and then you need to know what the terminal 

velocity is, which is appearing, right. Only then can you find out the viscosity of the fluid, 

right. 

As you can see, we have very simply equated buoyancy and the forces acting, and this we 

said is valid for NRe less than 0.1, this is very primary, that the Reynolds number, which is 

defined as D vt, where vt is the terminal velocity, into rho by mu, is less than 0.1. right. So, 

therefore, we rearrange this mu, sorry, we rearrange this mu as, mu is equal to 2 R square 

rhos minus rho, where rhos is the density of the solid and rho is the density of the liquid, 

right. So, obviously, the density of the solid is more, that is why it is penetrating into 



 

Liquid right into g. The value of g is known for everyone divided by 9 vt, right. So, I think 

from here a very unique relation is found out that is called Stokes equation. If you can find 

out from any book or any source, right? You see that Stokes equation is what? v terminal, if 

you know the density, if you know the viscosity 

then v terminal, it goes there, then that becomes 2 R square into rhos minus rho into g of 

course, into g divided by this 9 into 2 that divided by 9. right. So, this I am writing again 

on the top. This can be rewritten as vt, I do not know why the other color is not coming. 

So, vt is equal to 

 



 

this is 2 R square, right. So, if it is 4 R, then 4 R square into rhos minus rho into g divided 

by, this we have made 4. So, it can be 18 into this mu which, we have not written, right 18 

mu. So, that can be written again as 4 R square means D square, 

Right, into (solid minus liquid) density into g by 18 mu. I think this is the equation, which 

is very, very helpful, and widely used all over. To find out the terminal velocity, provided 

you know the density, provided you know the difference between density, and diameter, g 

is known, and viscosity mu is also known, right. So, if they are known, then you can find 

out vterminal, terminal velocity. This is very, very useful when you just think you have 

one container, right, and you have a slurry. This is liquid, and there are some solids, right. 

 

What will happen? These solids will settle down. So, in settling, you can find it out. 

Because these solids are heavier. So, they will fall and settle at the point. 



 

So, what is the terminal velocity required for settling? You can find out. You know the 

densities, you know the diameter, you know gravitational force, you know viscosity of the 

fluid, Right, this is for settling. The other one also can be done here, that you have milk. 

Milk contains a lot of fat, right? And at any moment at home, if you see milk, it is having 

a crust on the top, right, and that crust is nothing but a layer of fat, right. 

 

Generally, these fat globules have a diameter, Dfat, roughly equal to between 2 and 30 

micrometers in size. So, here also, knowing the density of fat, knowing the density of liquid 

water, or in this case milk, you can determine, and also knowing the diameter of the 

container, you can find out what the terminal velocity, vt, is. Right, to make this fat rise to 

the top, or separate, right. How much percentage of it is getting separated can also be 

determined. So, this is unique; it is not only that 



 

it is giving you a solution for finding out the viscosity, but also it is giving you an 

opportunity to find out the settling velocity of solids or some dust. slurry, and also you can 

find out what is the time required, or how much, yes, how much time you may require to 

get the fat globules separated within or from the milk, right. So, these two are very, very 

unique. So, what I suggest is that with the help of this, you try to solve some problems; 

then it becomes more clear to you. Then, we thank you for listening to the class. 

Thank you all, okay. Good day. 


