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Good morning, my dear friends, students, boys, and girls. We are almost midway through 

the course, midway in the sense that we have already done many things. Now, we will 

discuss flow through annuli, right? So, before going into this detail, the requirement of this, 

why it is so important, right? That we should know. 

 

 



I hope you understand heat exchangers, right? There are many heat exchangers, like double 

tube, etc., where one tube has one fluid, another tube has another fluid, they may be in co-

current or counter-current, and there is a heat exchanger. Meaning one is getting warm and 

the other is getting cold, an exchange of heat. So, under those situations, how the 

development of the flow characteristics is done, that is the topic today. Right, definitely, if 

we understand that, it will be very helpful for those who are doing heat transfer, mass 

transfer, or fluid flow, whatever. 

In an annulus. Annulus means, obviously, one cylinder within another cylinder, and the 

liquid is flowing through the space between them. This inner one is nothing but like a flow 

through a pipe, which we have already done. But the outer one, which we have not done, 

where the fluid is flowing, and the flow behavior or the characteristics of the flow we do 

not know, we have to find it out, right. Then the difficulty is that in the pipe flow. 

We knew that one fluid is moving, and we knew that within the boundary of the pipe, 

everything is happening, but that was within a domain. But in this case, it is not so. We 

have one inner cylinder and one outer cylinder through which the fluid is moving, right? If 

you remember, many classes before, we had shown one such problem where, in two 

concentric cylinders, one cylinder was constant and another cylinder was rotating, and 

there we wanted to find out the velocity distribution. 

Right, but it is not. So, the movement of the cylinder is not there. It is two coaxial cylinders, 

true, but they are fixed, and the fluid is flowing through the annular space, the space 

between the two cylinders. We have to find out the flow behavior or flow characteristics 

of the fluid. 

So, for that, as it is shown in the diagram, we take one direction, Z vertical, and another 

direction, R horizontal. And obviously, there is a third dimension like this; there would 

have been a third dimension which we are not considering, as we are considering it to be 

unity, right? So, in this, what we say is that we are forcing some liquid from the bottom to 

the top in the Z direction, and the radius R has an internal radius of kR, where k is a multiple 

of R. From the diagram, it appears that k is less than one. Otherwise, R will not be bigger, 

right? And the bigger diameter, the outer diameter, we are assuming to be R. So, between 

kR and R, a fluid is moving. 



 

So, you have to find out either the shear stress or momentum flux distribution, as well as 

the velocity distribution. So, for that again, as earlier, some assumptions or some preambles 

are required. So, the first thing is that the fluid is incompressible, right? And the second 

thing is that we are saying the flow is steady and laminar. The third thing is that there are 

no end effects, which we have already described many times. And the fourth thing is that 

the fluid is moving between two vertical coaxial circular cylinders of radii kR and r, right? 

So, for this, the Reynolds number we can define to be equal to 2R into 1 minus k into vz 

into rho by mu. Unlike D v rho by mu, here it is 2R into 1 minus k, this unit as a substitution 

of D, and then vaverage rho by mu. Obviously, there are two zones: laminar and turbulent. 

So, the laminar-turbulent transition occurs in the neighborhood of around 2000 Reynolds 

number. So, before the transition, the stable laminar flow appears to exhibit a sinusoidal 

motion. 

 

So, what do we do now? We take a momentum balance over a thin cylindrical shell and 

make the momentum balance. And the same differential equation as in the case of tube 



flow is obtained. Assuming similarity to the tube flow, we obtain that the relation between 

shear stress and pressure drop is like this. d dr of r taurz, as we have seen earlier, is equal 

to Pin minus Pout over L into r. 

 

Here, capital P is P plus rho gz because, if you remember from the pictorial view, we said 

that the fluid is flowing from the bottom to the top, right. So, we have the pressure 

difference, okay, that is P. That actual pressure is this P plus rho gz, which is the height of 

the cylinder column, whatever you call it. So, that is capital P is P plus rho gz. Now, this 

acts in the opposite direction of the gravitational forces, definitely, right. 

And integrating this and subsequent rearrangement of this, d dr of r taurz that is equal to Pin 

minus Pout over L into r. By rearranging and integrating again, by rearranging, we can write 

to be r taurz is equal to Pin minus Pout over 2 L into r plus C1 by r. Right. So, on integration 

and then rearranging, we get this: taurz is equal to Pin minus Pout over 2 L into r plus C1 by 

r. You see, in the previous relation or previous equation, we have d dr of r taurz is equal to 

Pin minus Pout over L into r, right. 

 



So, when we integrate this r, it becomes r squared by 2. So, that 2 has come to 2 L in the 

denominator. Pin minus Pout is constant. So, we have taken that there, right, and after this 

integration, we get r taurz is Pin minus Pout over L. R squared by 2, which has been taken 

inside 2 L, plus C1. 

Now, if we divide r taurz, which is from the left side, by r, then it remains taurz is equal to 

(P_in minus P_out) by 2L into r plus C1 by r. Now, we have to find out the value of C, that 

is C1, in this case, then we need to know the momentum flux at the boundaries. What is the 

boundary? Boundaries are either at r is equal to kR or r is equal to capital R. But at r is 

equal to kR or at r is equal to capital R, we do not know what the boundary is, because we 

have no idea about the velocity profile or the stress profile. 

 

So, we cannot say that at r is equal to R, at r is equal to kR and at r is equal to capital R, 

the boundary will be like this. So, we can say that there will be a maximum in the velocity 

profile at some fixed point, which is unknown, and beyond the normal boundary between 

r is equal to kR and r is equal to R. Obviously, it has to remain within that annular space. 

So, it should be between r is equal to kR and r is equal to capital R. Obviously, this is not 

certain or not known that this point is becoming the maximum, right. So, we assume that 

point to be equivalent to lambda R. Obviously, as you see that r is equal to kR with one 

and r is equal to lambda R another thing comes up. So, this brings up momentum flux, and 

that can be obtained as C1 is equal to (P_in minus P_out) over 2L into (lambda R) whole 

square or (p0 minus p_in) by 2L, (p0 minus p_in) by 2L into R, r by R minus lambda square 

into R by r, and d v / d r equals to minus (p_in minus p_out) into R into r by R minus 

lambda square into R by r. 



 

 

taurz equals to pin minus pout by 2L into R into r by R, that is small r by capital R minus 

lambda square R by r, capital R by small r. And from here, we can write dv dr is equal to 

minus pin. minus pout times R by 2 mu L into r by R minus lambda square into R by r. And 

dv / dr we get Pin minus Pout or Pin minus Pout over 2 mu L into R times small r by capital 

R minus lambda square R by r. Now, this is another equation which we have arrived at, 

and now we have to solve it. So, we get vz is pin minus Pout R square by 4 mu L r by R 

whole square minus 2 lambda square into ln r by R plus C2. 

The boundary condition, at r is equal to kR, is vz is 0, and the boundary condition at r is 

equal to R, r is equal to r rather capital R, vz also equal to 0. So, we can write 0 equals to 

pin minus pout by 4 mu L into R square into bracket k square minus 2 lambda square into ln 

k plus C2, bracket closed, ok. So, the boundary condition is like this, at r is equals to kR, 

vz is 0. And the second boundary is that r is equal to R, vz is also 0, why? Because both are 

solid surfaces. 



 

So, the liquid, inner liquid in the inner tank, in the inner cylinder, that is also getting cling 

with the surface, and the outer cylinder that is also clinging with the surface. So, this means 

that if you put the boundary vz is 0 at r is equal to KR and at r is equal to capital R. So, it 

is 0 equals to Pin minus Pout over 4 mu L into R square into k square minus 2 lambda square 

ln k plus C2. This is for one boundary, and the other boundary is 0 equals to minus Pin 

minus Pout, there also it was minus Pin minus Pout into R square by 4 mu L into bracket one 

plus C2 bracket closed. So, we can write. 

Since C2 is equal to minus 1 and 2 lambda square is equal to 1 minus k square by ln 1 by 

k, then we can write: momentum flux distribution and velocity distributions are like this. 

C2 we have taken as minus 1, not that C2 we have taken minus 1. C2 has come to be minus 

1, and 2 lambda square is 1 minus k square by ln 1 by k. So, we found out both C2 and 2 

lambda square. Therefore, we can find out the momentum flux distribution and velocity 

distribution like this: taurz is Pin minus Pout 

into capital R by 2 L whole into r by R minus 1 minus k square by 2 ln 1 by k into r by 

capital R, and vz is equal to pin minus pout into R square by 4 mu L. into 1 minus small r by 

capital R whole square plus 1 minus k square by ln 1 by k ln of r small r by capital R. So, 

these are the two distributions, one for momentum and another for the velocity distribution. 

This we have to keep in mind that yes, we have not mathematically solved everything. At 

some points, we have taken into consideration that through mathematics it should come 

like this. Where the exact point at which the velocity will be maximum or the shear stress 

will be minimum is not known. So, it is not that easy to find out what is the 



 

velocity profile and momentum flux or shear stress profile, right? What we have done? We 

have taken an arbitrary plane, lambda in between R and kR, and see that how much taurz 

and vz are getting affected. If we go back to the diagram, here you see that I do not know 

whether it is visible or not that this is the 

Diagram for the stress profile, where stress profiles are like this, right? And this is the 

velocity profile. Which is like this, and this is known as that arbitrary velocity profile 

determination or to find out the maximum velocity, where it is, or to find out the minimum 

stress of momentum. So, this we have now made that, yes. This can be obtained. And we 

have obtained the mass flow rate, sorry, we have obtained, 

 



 

So, we have obtained the stress distribution, and we have obtained the velocity distribution, 

and they are like this: taurz is equal to Pin minus Pout over 2 L into R into r smaller by capital 

R minus 1 minus k square over 2 Ln of 1 by k. Into r by capital R, this is for shear stress. 

Similarly, for the velocity distribution or velocity profile, we have obtained vz that is equal 

to some common that is Pin minus Pout or Pin minus Pout or Pin minus Pout. Into R square by 

4 mu L into 1 minus small r by capital R whole square plus 1 minus k square ln 1 by k into 

ln of r by R, right? 

 

So, with this, the time is up. Let us stop this class, and we shall continue in subsequent 

classes to find out the other parameters, okay.  

Thank you all. 


