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Good morning, my dear boys and girls, students, and friends. So, we are in the process of 

fluid flow, right? Now, another new topic which is also very relevant is flow through a 

surface. For example, this is one, you see that the surface is here, that surface is this one, 

okay. This is the solid surface. 

 

 



Okay, this is the solid surface. Now, here we are showing it to be inclined because if we 

are showing it to be inclined, it can also be vertical like this. We said in the beginning, in 

the preamble classes, do you remember, or you can search back, that things are getting 

concentrated through jacketed. This is jacketed. So, here heating is done. 

 

So, the gap between them is very, very narrow. So, a drop of slurry falls here, which 

gradually gets vaporized, and you get a concentrated outlet. Right? This we have shown, 

we have said in the beginning, right? Now, we have taken it inclined because we get cos 

beta, the angle of inclination, right? 

And And for this, we are taking a volume element. This volume element is this one, right? 

This volume element is this one where you see the one. One dimension is delta x, so small, 

right? 

 

The third dimension is unit perpendicular to this, and the second dimension is the length 

of the surface, that is L, ok. Now, we are flowing a fluid through this. We have taken that 

shell or control volume like this; this is that, ok? This is that control volume, and we have 



to find out. The momentum flux distribution; we have to find out the momentum flux 

distribution, that is this. We have to find out the velocity distribution like this, and we have 

taken here; there is 

 

end effect, right? So, this is what means that there is no end effect; that is, whatever end 

effect is there, this is the perfect flow, fully developed flow, right? This is fully developed 

flow that we have considered, right? Now, another thing which is very important is that 

there are certain assumptions. You see, this is the surface, right? 

 



 

This is the surface, and this is the top layer of the fluid. Obviously, it is in the expanded 

form. So, this top layer is open to the atmosphere, right? This is open to the atmosphere. 

So, the boundary condition will vary accordingly. So, those we will discuss now. 

 

 

This is the direction of gravity. This is the direction of gravity, and the angle between the 

surface and the vertical is angle beta, right? The length, or thickness, whatever you call it, 



is del. So, the distance from the top to the surface is del, and one more thing: the layer 

which is in contact with the surface, that is, this layer, the liquid which is in contact with 

the surface, is assumed to be clinging to the surface. Right, it is clinging to the surface. 

That means if this surface is stationary, then the layer which is clinging to the surface is 

also stationary, right? There is no movement of that layer. 

So, with this, let us go to the assumptions which are valid for this development. The 

assumptions are that we are doing a shell momentum balance, and this is called the falling 

film, right? As we have shown with an inclined surface. With an inclined surface, you have 

shown that the fluid is coming and falling into it, and there is a fully developed flow. There 

are no end effects; that is what we are putting into the assumptions. So, the assumptions 

say that at solid-fluid interfaces, the fluid velocity equals the velocity with which the 

surface itself is moving. 

 

This means the fluid clings to the solid surface with which it is in contact. Right? At liquid-

gas interfaces, which I have shown you and I told you that you remember. At liquid-gas 

interfaces, this is that, unless I take some pen it will not be. 

This is that liquid-gas interface, right. This is gas or atmosphere or whatever, right. So, at 

these interfaces we The velocity gradient, that is momentum flux in the liquid phase, is 

assumed to be 0. That is, at liquid-gas interfaces, the velocity gradient, that is momentum 

flux in the liquid phase, is assumed to be 0. 



 

 

 

At liquid-liquid interfaces, momentum flux perpendicular to the interface and the velocity 

are continuous across the interface, right. With these three assumptions, if you want, you 

can repeat quickly that at solid-fluid interfaces, that is the bottom part Velocity, fluid 

velocity is the velocity with which the surface itself is moving, meaning the fluid clings to 

the solid surface with which it is in contact, right? And at liquid-gas interfaces, the velocity 



gradient, that is momentum flux in the liquid phase, is assumed to be 0. And the third point 

is very vital, all are vital of course, at liquid-liquid interfaces, momentum flux 

perpendicular to the interface and the velocity are continuous across the interface. 

Then the boundary or governing equation we can write that the rate of momentum in minus 

the rate of momentum out plus the sum of the forces acting on the control volume is equal 

to the rate of accumulation of momentum, right? Similar to the earlier also. The rate of 

momentum in minus the rate of momentum out plus the sum of the forces acting on the 

volume element is equal to the rate of accumulation of momentum. Now, the rate of z 

momentum in by convection is the area that is w into delta x vz into rho vz at z is equal to 

0. Similarly, the rate of momentum out by convection is also w delta x vx into rho vz is 

equal at x is equal to L is 0. 

 

It is the rate of momentum out by convection. Then, once convection is over, it becomes 

molecular transport, that is, the rate of momentum in by molecular transport is L w tauxz 

at x. And the rate of momentum out by molecular transport is Lw tauxz at x plus delta x. 

Gravity acting on the fluid is Lw delta x into rho gx cos beta. Lw delta x is the volume 

element. Rho gx is the 

gravity, and this is at an angle of beta, so cos beta. So, individual terms we have found out. 

Now, if we substitute this in the governing equation, as earlier we have said, then we can 

cancel the rate of momentum in earlier, the rate of momentum in by convection, and the 

rate of momentum out by convection because it is under steady state. So, whatever is 

coming, is going out. 



 

So, we can write that equation, which is the governing equation, eliminating the bulk 

transport, as L w tauxz at x minus L w tauxz plus delta x plus rho gx cos beta delta x into L 

w. So, this is equal to 0. Now, if we divide both sides by delta x L w, then the left side 

becomes tauxz at x plus delta x minus tauxz at x divided by delta x, because here also we 

had L w, L w. So, L w goes out, delta x remains and rho gx because delta x L w goes out. 

So, rho gx cos beta, right? 

Now, putting the limit x tends to 0, we can write it as del del x of tauxz that is equal to rho 

gx cos beta or, on integration, we can write tauxz is equal to rho gx x into cos beta plus C1. 

Now, at x is equal to 0, tauxz is also 0; that is the boundary. At x is equal to 0, tauxz is also 

0. Mind it, we have taken our axis from the open end. I go back to that diagram again. 

Here is our axis, okay. Here is our axis, here. So, X goes like this, and Z goes like this, and 

the third dimension is Y. Right? So, it starts from here. 

 



 

So, that means if that is the truth, then we can say that At x equals to 0, the boundary is 

tauxz is equal to 0, that was our, this is in accordance with the assumptions we have made, 

right. Then if delta x tends to 0, tauxz del x is equal to rho gx cos beta. So, again on 

integration, this gives tauxz is equal to rho gx x cos beta plus C1. So, the C1 is the integration 

constant. 

 

Now, we need to know the boundaries again. At x equals to 0, tauxz is also equal to 0. At x 

is equal to x, at x equal to 0, tauxz is 0. So, C1 is also 0 and therefore, we can write tauxz is 

rho gx into x cos beta and del Ok, we define tauzz as no, this tauzx only, not z is mu minus 

mu del vz / del x and this is equal to rho gx into x into cos beta. 

Therefore, there is a negative term, minus mu, minus mu del vz / del x. So, that negative 

term to replace it, we are putting it to the left-hand side, ok. And I should do this otherwise 

it will be keeping in your eye. That this, should be xz instead of zz, this is xz, ok. So, tauxz 

is minus mu from this definition del vz / del x that is rho gx x into cos beta. Or del vz del x 

we can write is equal to minus rho gx into cos beta divided by mu. 



Therefore, vz on integration we get vz is equal to minus rho gx cos beta x square by 2 mu 

plus C2, right. Another integration constant has come, and we have to find out with 

boundary. So, the boundary condition as we have stated the problem earlier is that at x 

equals to vz is equal to 0. 

At x equal to del, vz is equal to 0. Therefore, C2 becomes equal to rho gx into del square 

into cos beta by 2 mu, and vz is rho gx cos beta into del del 2 square minus del square cos 

beta by 2 mu into 1 minus x by delta, right. So, by putting in the boundary, vz is equal to 

del becomes rho gx del square cos beta by 2 mu, and vz becomes rho gx cos beta into del 

 

Therefore, we can write vz is equal to rho gx square rho g is rather x into del square cos 

beta by 2 mu into 1 minus x by del whole square. So, as the value is increasing from x0 to 

x del, that second term x by del becomes 0. Right, or at x equals to 0, it also becomes 0. 

So, accordingly, we get the vz. So, vzmax is at x equals to 0. Hence, we can say that vmax or 

vzmax, whichever is suitable for you, B max or vzmax is rho g del square cos beta by 2 mu. 

So, we find out the maximum velocity when a fluid is flowing through an inclined surface. 

Right. We have to find out also the average velocity and some force, whether it can be 

taken later or whether the force is acting. We will come next class with the average velocity, 

right. 

So, maximum velocity is rho g del square cos beta by 2 mu, average velocity we will find 

out, and instantaneous velocity is is rho g del square into del square by 2 cos 2 del 2 mu, 

right. So, it becomes rho gx del square cos beta by 2 mu, that is the instantaneous velocity 

into 1 minus x by del whole square. It is parabolic in nature, and the maximum velocity we 

have seen it to be rho g del square by cos beta rho g del square cos beta by 2 mu, ok. Thank 

you. 



 


