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Good morning, my dear friends and students. We are dealing with flow through 

pipes, right? We have found out the instantaneous velocity in the pipe, vx. We have 

found out vx we have found out; it is (Pin minus Pout) over 4 μ L into R square into 

(1 minus r by R square), which is parabolic in nature. We have also found out the 

average velocity. 

 

 



 

The average velocity is (Pin minus Pout) into capital D square, that is diameter over 

32 μ L, and this equation is known as the Hagen-Poiseuille equation, which is valid 

for pipe flow, in laminar flow, where the flow is fully developed, there is no end 

effect, and it is under steady state as well. The fluid is incompressible and the fluid 

is also having constant density, right? Incompressible and, yeah, incompressible 

means constant density. So, under this situation, the second Poiseuille equation 

is valid, right? And we have found out the maximum velocity, which is equal to Pin 

minus Pout. It is not P0 minus PL, okay? P0 minus PL means 

 

inlet to outlet at x is equal to 0, P0; x is equal to L, PL. So, inlet minus outlet into R 

square by 4 μ L is the vmax, and which is valid at r is equal to 0, right. Which is valid 

at r is equal to 0. At r is equal to 0, this becomes 0, this is 1, and this is Pin minus 

Pout. So, if you make r as D, then it becomes D square by 4. 



 

So, it becomes 16 μ L; otherwise, r square by 4 μ L, right? That is the vmax. R 

square by 4 μ L, at r is equal to 0, and vaverage, what we have seen is 32 μ L D 

square (Pin minus Pout). So, the relation between average velocity and maximum 

velocity is like that: average velocity is half of the maximum velocity, vmax by 2. 

Okay. This is what we have till now established. 

This can also be solved using the Navier-Stokes equation. I told you, Navier-

Stokes has immense, it has immense applications. So, we can say that from the 

description of the problem, we said vr is equal to vtheta is equal to 0. So, there is 

no velocity in the r direction and in the theta direction. 

 

So, these two are 0, and del vz del z, that is the third dimension, is also 0 because 

there is no velocity profile along the depth. So, this means that the first two 

equations in the Navier-Stokes equations do not exist because vr, vtheta both being 

0 and del vz del z being 0, the first two equations in the Navier-Stokes equations 

do not exist. The test equation given then becomes equal to 0 is equal to mu into 



1 by r del del r of r del vz del r minus del p del z, right. Here, the only thing which 

we have taken is del vz del z is equivalent to del vx del x, 

right, del vz del x is equal to del vx del x, that is, whatever velocity was at the inlet, 

the same velocity is at the exit, right. There is no velocity profile along the x axis, 

right, there is no velocity profile along the x axis, or no, I should not say velocity 

profile, I should say that there is no change of velocity with the distance in the 

direction of flow. So, this means that the first two, ok, and then we come to 0 is 

equal to mu 1 by r del del r of r del vz del r minus del p del z, this is the third one, 

ok. One was for r, one was for theta, and the third one is for z, or x, whatever we 

call it. 

So, we can rewrite 1 by r del del r of r del vz del r that is equal to 1 by mu del P del 

z or del del r of r del vz del r is equal to r 1 by mu del P del z. On rearrangement, 

we can write r into del vz del r is equal to 1 by mu del p del z into r square by 2 plus 

C1, that is the first integration constant, right. Again, we can rewrite as del vz del r 

equal to 1 by mu del p del z into r by 2 plus C1 by r, this is our rearrangement. Now, 

again, at r is equal to 0, del vz del r is also 0, right. If we consider this instead of x, 

as vz as z, then at r is equal to 0. 

 

del vz del r or del vx del r, whatever we call it, is also 0. Therefore, C1 is equal to 

0. Therefore, we can say that del vz del r is equal to 1 by mu del p del z into r by 2. 

So, on integration, it gives vz is equal to 1 by mu del p del z into r square by 4 plus 

C2. 

Again, we need another constant, another boundary to find out another constant 

C2. Since r is capital R, at r is equal to capital R, vz is also 0. Therefore, C2 is equal 



to minus 1 by mu del p del z into R square by 4. Therefore, vz, on rearrangement, 

we can write, 1 by 4 mu del p del z r square minus R square, right? 

So, at r is equal to 0, now vz is minus 1 by 4 mu del P del z into R square. Therefore, 

vz is Pin minus Pout into R square by 4 mu L is equal to vmax, right? So, vz is vmax 

into 1 minus r by R whole square, right. This is what we find out from the basic 

equation that is our 

Navier-Stokes equation, right. So, we can write that vz average is 1 by pi R square 

into integration of 2 pi r dr vz. So, that is equal to minus R square by 8 mu into del 

p del z. So, vz average times integration of dz. is minus R square by 8 mu into delta 

P. Now, vzaverage into L is Pin minus Pout into R square by 8 mu. Therefore, 

vzaverage is delta P or Pin minus Pout into D square by 32 mu L, which is nothing but 

the Hagen-Poiseuille equation. 

 

So, we have also found out the Hagen-Poiseuille equation from the Navier-Stokes 

equation. Mind it? What we needed is that from the Navier-Stokes equation, the 

boundaries, whatever we know, we have put that: vr and vtheta are 0. And either 

del vx del x or del vz del z, whatever you write, is equal to 0, right? So, from the 

Navier-Stokes first two equations, that is r and theta, there is nothing which we can 

take. 



 

And the third equation, that is there, we have given in terms of z. So, that is why it 

is also in terms of z, but it can also be in terms of x because all other things are 

the same, only instead of z it is x. So, 0 is mu times 1 by r del del r of r del vz del 

r. Into r del vz del r minus del p del z, that is from the Navier-Stokes equation we 

get. And on simplification, we write 1 by r del del r of r del vz del r is equal to 1 by 

mu del p del z, right? Therefore, we can say that del del r of r del vz del r is equal 

to r into 1 by mu del p del z or r del vz del r is equal to 1 by mu del p del z r square 

by 2 plus C1 and by putting a boundary del vz del r, we can write 1 by mu del p del 

z r by 2 plus C1 by r, rearranging. And putting the boundary, we can write that at r 

is equal to 0, del vz del r is 0, therefore, C1 is 0. 

 

Hence, del vz del r is 1 by mu del p del z into r by 2. So, we can integrate, vz is 1 

by mu del p del z r square by 4 plus C2, here we write vz is 0 at r is equal to capital 

R. Therefore, C1 becomes minus 1 by mu del p del z r square by 4 and vz becomes 

1 by 4 mu del p del z small r square minus capital R square. At r is equal to 0, vz 

is equal to minus 1 by 4 mu del P del z into capital R square or vz is equal to P in 



minus P out into R square by 4 mu L, that is equal to vmax or vz is equal to vmax into 

1 minus small r by capital R square. Therefore, we can write vzaverage is 1 by pi r 

square. 

 

That is, average velocity into integration of 2 pi r dr vz and that becomes equal to 

minus r square by 8 mu into del p del z. Therefore, vz into dz integration is equal 

to minus R square by 8 mu into dp, integration of dp. So, vzaverage dz on integration 

between 0 to L is L and dp on integration between pin and pout. It is Pin minus Pout, 

because that minus is taken care of into R square by 8 mu. So, vzaverage is Pin 

minus Pout into D square by 32 mu L, because. D is equal to 2 r or r is equal to D 

by 2, right? 

 

So, if we substitute, then it becomes 32 mu L, right, and this curve on the numerator 

is called the Hagen-Poiseuille equation. Let us now define another parameter, 

another term called the Fanning friction factor, or small f. The Fanning friction 

factor is known as small f, very popular in the flow of fluid through pipes and others, 



right. This is what it is again. I take this help that if it is a pipe, if a liquid is flowing 

from this side to this side, from a source having some pressure drop. Therefore, 

depending on the composition or constituents of this container, what is it made of? 

If it is made of plastic, that will have one type; if it is made of stainless steel, that 

will have another; if it is made of copper, that will have another; if it is made of 

some rough solid, then it will have another frictional loss, right. 

 

 

So, this delta P will go on increasing. If that thing happens, and this was 

established by Fanning, the resistance suffered is known as the Fanning friction 

factor, right. So, the Fanning friction factor 'f' is denoted as f and can be defined as 

the drag force per unit wetted surface area, which can also be said equal to shear 

stress  s at the surface divided by the product of the density times the velocity 

head. 

So, density times velocity head is known as rho v squared by 2, right. So, I define 

again the Fanning friction factor. I just explained with the example what it means. 



It is defined as the drag force per unit wetted surface area or shear stress s at the 

surface divided by the product of density times velocity, or it should be said product 

of density and velocity head, or it is rho v squared by 2, that is the product of density 

and velocity, and rho v squared by 2, right. So, then let us look into what the drag 

force is. 

So, the drag force is nothing but delta Pf, where f is denoted for the friction factor. 

Delta P out of friction times the cross-sectional area, that is pi capital R squared 

And the wetted surface area is 2 pi capital R capital L, right. So, whatever the pipe 

radius and whatever the pipe length, that is the wetted area. So, 2 pi R L is the 

wetted area. 

And drag force that is delta Px or delta P times the sectional area or CS, cross-

sectional area that is pi R square and weighted area surface area is 2 pi R L, right. 

So, from the definition, we can write, we can write the relation between pressure 

drop and friction factor, relation between pressure drop and friction factor, that is 

delta Pf and friction factor f, right, that can be related as based on the definition of 

the Fanning friction factor f. So, f we have defined it to be s divided by rho v square 

by 2 as it is defined, right, shear stress at the surface. 

 

So, s, that is shear stress at the surface, divided by rho v square by 2. So, this is 

equal to that, by the definition we have said the shear stress at the surface, that is, 

s, f is s divided by the product of velocity head and density, that is rho v square 

by 2. So, this is equal to delta Pf into pi R square over 2 pi R L divided by rho v 

square by 2, right. 



How do you add this? That drag force, we have said, delta Pf into sectional area, 

cross-sectional area, right, and we have also said that weighted surface area that 

is 2 pi R L, right. So, f is s over rho v square by 2 and s is delta Pf into pi R square 

by 2 pi R L, right. 

So, this divided by rho v square by 2 is the Fanning friction factor f, which on 

simplification can be written as delta Pf into R over L into rho v square is equal to 

delta Pf into capital D over 2 L rho v square, right. So, this on simplification can be 

written that delta Pf is equal to 2 f L rho v square, right, or it can be rewritten as 4 

f L rho v square by 2 D, that in the numerator, we have introduced one 2 and that 

is why denominator another 2, right. So, delta Pf we can write to be 

 

32 mu v L by D square, right, which is nothing but 4 f rho L by D into v square by 

2, 4 f rho L by D into v square by 2, right. From these two relations, we can find out 

the Fanning friction factor f is equal to rho v D by mu or f can be written as 16 by 

NRe for laminar flow. So, we can say again, sorry, that f is 16 by NRe, right, which 

is valid for laminar flow. So, we can write the delta Pf equals to 4 f rho L by D into 

v square by 2, right? 

And f is 16 by NRe for laminar flow. Our time is up. So, thank you for listening. We 

will add on in the next class.  

Thank you. 



 


