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Good morning, my dear students and friends. For the last many classes, we have 

been handling the equation of motion, right? Its derivation in the Cartesian 

coordinate, we have done. We are now dealing with the equation of motion in the 

cylindrical coordinate, that is, r Θ z, (r, theta, z).  

Everywhere we are giving this volume element because otherwise, it will be out of 

place from our mind. That our volume element is like this, this was for Cartesian 

coordinate. Obviously, for cylindrical coordinate, it will be quite different, right? 

Which we have shown in your equation of motion, equation of continuity 

development, right? And there we have seen how different it is from Cartesian 

coordinate, right. So, what we have arrived at till now is that Navier-Stokes 

equations for the Cartesian coordinates, Navier-Stokes equations for the 

cylindrical coordinates, right. 

 

And we were discussing the individual terms, what they physically mean, right. So, 

if we go back to that. This was our Navier-Stokes equation in cylindrical coordinate, 



right. So, we were discussing individual terms like what is del vr del t, right? This 

is a differential term. So, it implies that what is the rate of change of vr, that is, the 

velocity component 

 

in the direction r, vr, what is the rate of change of velocity vr with respect to time 

Similarly, obviously, vr does not need to be explained because vr is the velocity 

component in the r direction. And the next differential form is del vr del r, meaning 

what is the change of velocity vr in the direction. r, right? Plus, we have seen some 

term which are vΘ by r, vΘ is the velocity component in the Θ direction, right. And 

vΘ by r is a number, and then the differential that is del del Θ of vr, meaning 

What is the rate of change of vr with respect to Θ, right? Then v Θ square by r is Θ 

square is known, that is the velocity component in the Θ direction, r is the radius, 

right. Then this is plus vz, the velocity component in the z direction, times del del z 

of vr. Again, what is the rate of change of vr with respect to z, right? 

This is equal to mu times del del r of 1 by r del del r of r vr. So, many derivatives 

are there, it is a double derivative. So, mu times, obviously, that is viscosity, we 

have said earlier, and this is with respect to that, what is the rate of change of 1 by 

r del del r of r vr, right? r vr is a number, vr is known, the velocity component in the 

r direction, r is the radius, known, right. What is the rate of change of, what is the 

rate of change of r vr in the r direction times 1 by r, this is 1, and that is, what is the 

rate of change of this parameter with respect to r is del del r of 1 by r del del r of r 

vr, right. 

1 by r square del 2 vr del Θ square, 1 by r square is a number. So, del 2 vr del Θ 

square again, it is nothing but we have shown earlier that, this is del del r, del del 



Θ of del vr del Θ, right, that is, what is the rate of change of the first one is del vΘ 

del r del vr del Θ, that is, what is the rate of change of vr with respect to vΘ, right, 

and again, this parameter, what is the rate of change of this parameter with respect 

to Θ, that is the double derivative of vr vΘ, ok. Similarly, 2 by r square del vΘ del Θ, 

2 by r square is the number. 

So, del v Θ del Θ meaning that, what is the rate of change of Θ with respect to vΘ. 

And, del to vr del z square means, what is the rate of change of vr with respect to 

z, and again, this parameter, what is the rate of change of this parameter with 

respect to r, once more. right, and del p del r is the pressure term, and rho gr is the 

gravitational term. Similarly, all other terms in the Θ component and z components 

are there, and this can be explained in this fashion in a similar way, right. Now, we 

go to the 

It can be better written like the r component of velocity in Cartesian rather than 

cylindrical coordinates, and this is known as the Navier-Stokes equation. So, in the 

Navier-Stokes equation, what is the r component? We have written clearly here: 

rho times del vr del t plus vr del vr del r plus vΘ square by r del vr del Θ minus vΘ 

square by r plus vz del vr del z equals mu times del vr. Del del r of 1 by r del del r 

of r vr, right, plus 1 by r square del 2 vr. Del Θ square minus 2 by r square del vΘ 

del Θ square minus 2 by r square del vΘ del Θ plus del 2 vr del z square minus del 

p del r plus del gr. This is the r component. 

 

Viscosity velocity is known as the Navier-Stokes equation in the r component of 

velocity. Similarly, the Θ component can be said as rho del vΘ del t plus vr del vΘ 

del r, vr times del v Θ del r. Plus vΘ by r times del vΘ del Θ plus vr vΘ by r plus vz del 

vΘ del z equals mu times del del r of 1 by r del del r of r vΘ plus. 1 by r square del 



2 vΘ del Θ square plus 2 by r square del vr del Θ plus del 2 vΘ del z square is minus 

rather 1 by r del p del Θ plus (rho) ρ gr. So, this is the 

 

Θ component of the velocity in terms of the Navier-Stokes equation. And the z 

component can be said to be rho times del vz del t plus vr del vz del r plus vΘ by r 

del vz del r or rather del vz del Θ. Plus vz del vz del z equals mu times 1 by r del del 

r of r del vz del r plus 1 by r square del 2 vz del del Θ square plus del 2 vz del z 

square minus del p del z. ρ gr is the z component of momentum according to the 

Navier-Stokes equation in the cylindrical coordinate r, Θ, z, right. I have not given 

spherical coordinates because that is even more complicated. 

 

That is even more complicated, which is why I have not given it here, and in most 

cases, in all kinds of problem solutions, we do not need it so much, right. If we look 

at a problem using the Navier-Stokes equation solution, we can do this in this class 

by first understanding and then solving it. What is given? It is given that if an 

incompressible fluid is mentioned, the moment it is said incompressible fluid should 



strike in your head that Incompressible means the density is constant; density is 

not variable. 

So, if an incompressible fluid is flowing between two vertical coaxial cylinders. So, 

two vertical coaxial cylinders like this is a vertical coaxial cylinder and say this is 

another vertical coaxial cylinder, right. Coaxial means the same axis, right? Vertical 

we know this is vertical. Horizontal would have been this, right, like this one and 

this one another. So, but it is vertical. 

 

So, it is like this. Similarly, we can say we can tell the problem. If an incompressible 

fluid is flowing between two vertical coaxial cylinders and the outer is rotating with 

an angular velocity omega. Determine the velocity for the tangential laminar flow, 

right. 

I repeat, if an incompressible fluid is flowing within two vertical coaxial cylinders 

and the outer one is rotating. with an angular velocity omega, determine the 

velocity for the tangential laminar flow, right. Had it been not tangential, but the, 

but the, what we say, normal tangential laminar flow, instead of that if we would 

have said normal laminar flow, then it would have been vr, but here we have said 

tangential laminar flow. So, we need to know vΘ. How? 

Like this, the problem can be described in terms of a pictorial view, right. We have 

two coaxial cylinders, right, we have two coaxial cylinders. So, one is this coaxial 

cylinder and another is this coaxial cylinder, right. We are told that the outer one is 

rotating with an angular velocity of omega. So, which one is the outer one? 



 

The outer one is this one. It is rotating. This one is rotating with an angular velocity 

of omega, right? As this is said, right. We are asked what is the tangential laminar 

velocity to find out which one is that. So, our coaxiality is this. This is the axis, this 

is the first radius, and this is the second radius, ok. If this is termed as the first 

radius R, this can be termed as a multiple of R, say K R. So, in this case, definitely 

from the 

figure, it appears that R is less than KR. That means K is greater than 1, right. So, 

we can say that we have to find out the velocity component with Θ, right. So, we 

have to find out the velocity component with respect to Θ. So, from the physical 

understanding of the problem, what do you understand? We have seen in the 

Navier-Stokes equation, there are many, many, many terms like the velocity 

components vr, vΘ, vz, right, then the derivatives del vr, del z, etc. 

So, from the physical understanding, what is the physical understanding? That the 

inner radius, the inner cylinder is stable, constant, not rotating, but the outer 

cylinder is rotating. With an angular velocity, and the fluid is in between them, right? 

This we have shown, ok. Again, I show once more so that it becomes easier. This 

is the two cylinders, coaxial cylinders, right. The outer cylinder is rotating with an 

angular 

with an angular velocity, sorry, with an angular velocity of omega, right. So, we can 

say that vr is vz is equal to 0. We go back to the initial whether the internal this one 

is fixed and it is laminar. So, the layers of fluid are flowing like this, right? Layers 

of fluid are flowing like, No, no, no cross, no cross, because if it is crossing, that 

means there is some turbulence. 



So, all the layers like this, like this, like this, like this, as close or as good as you 

can make it up, ok. So, they are rotating with an angular velocity of omega, right? 

We then can say that from the physical understanding, we say vr is equal to vΘ vr. 

What is that? That velocity component in the r direction. What is that? 

This is the r direction. So, the velocity component in the r direction is not there 

because these are all in the laminar region, right? So, it is not that this velocity is 

getting changed, right? Had it been that this velocity here is getting changed, then 

it would not have been laminar. So, we come to that this is a laminar flow and 

velocity component of vr and vΘ and vz, there is no vertical, right? Had it been like 

this, sorry, had it been like this, that cylinder. So, we do not have any z component. 

Again, had it been a z component profile, then there would have been mixing of 

the liquid, which we are not saying it is under laminar condition, right. So, We can 

say that the velocity components vr and vz are equal to 0. Right, that is what we 

have said that from the understanding of the problem, vr is equal to vz is equal to 

0, and also del vΘ del Θ. What is that del vΘ del Θ? 

That del vΘ del Θ means the rate of change of Θ with respect to Θ or the rate of 

change of vΘ with respect to Θ. Now, Θ means it is moving like this, right? It is 

moving like this. So, this is the Θ. Is there any change in vΘ, vΘ with respect to Θ? 

Whatever it was here is also there, right? There is no change of velocity vΘ. So, vΘ 

is not changing with the velocity vΘ. 

So that means, vΘ is a del vΘ del Θ is 0, right? So, with this del vΘ del Θ is 0, vr is 

vz equals to 0. So, we can proceed to the Navier-Stokes equation. What is that 

Navier-Stokes equation? If we take the r component, 

If we take the r component, the first one here it is said that rho we have not said 

anything, but we have said vr is equal to 0. If vr equals to 0, then what we get? vr 

is equal to 0 that means, this term is out, vΘ by r del vr del vΘ square by r we have 

not said, right, minus vΘ square by r is there because vΘ is 0 or not, we do not 

know. 

So, this is also 0, right? So, this is also 0, this is also del 2 vr del Θ square, here is 

0. So, this is also 0 and 2 by v square 2 by r square del v Θ del Θ square we already 

said del del Θ of vΘ is 0. So, del 2 vΘ del Θ square is also 0 and this is also 0 and 

del vr del z square is also 0. 



So, we get ultimately what? Ultimately we get from this in the Navier-Stokes 

equation 1 as this, right. We get this that minus rho vΘ square by r is equal to minus 

del P del r. We are neglecting here gr because that is not very high. So, gr we are 

neglecting. 

 

Then, from the first equation of the Navier-Stokes equation, we get minus rho vΘ 

square by r is equal to del P minus del P del r. This is the first equation. Next, we 

get, from the second equation, again we go back to the Θ component. In the Θ 

component, again we see whatever we have been said from there: del vΘ del t, 

right, del vΘ del t. Since it is a laminar flow, and we can assume it to be a quasi-

steady state. 

 

So, del vΘ del t is 0, right, here is 0, this is 0, then del vΘ del Θ, already we said to 

be 0. Then, vr vΘ by r, vr is 0, so this is 0. vz is also 0, so this is 0. Then, you have 

mu times del del r of 1 by r. del del r of r vΘ here, this is OK, but here vΘ del del Θ 

of vΘ is 0. 



 

So, this is normal derivative is also 0, vr is also 0, right. Then, what do we get? We 

get del 2 vΘ del z square to be equal to that del 2 vΘ del z square, yeah, this is and 

del P del Θ is there, (rho) ρgr we are eliminating. So, we get that 

that equation, the second one is 0 is equal to del del r of 1 by r del del r of r vΘ, 

right. And the third one, that is Z component, here we get again from del vz del z 

del vz is 0. So, this is 0, this is 0, here both del vz del r and vr are 0. 

 



 

So, del vz del Θ is 0, del vz del z is also 0, mu 1 by r del del r of r del vz del r del vz 

del r means whatever. The rate of change of r with the rate of change of vr vz with 

respect to r, vz is 0. So, this is also 0, del 2 vz del Θ square is 0, del 2 vz del z 

square is also 0. So, we get minus del p del z plus rho gr. 

 

Again, we will try not to take the gravitational terms because they are not significant 

in a low area, small height, or small system, ok. Then we get The third one is 0 

equals to minus del P del z plus rho gr. So, from the three equations, understanding 

the problem, we have come to identify the terms. That is the most fundamental, 

identifying the terms. 

I am not saying that you memorize the equation of continuity; it is very difficult. At 

least you can refer to it, right, and understand the terminologies. We are said in 

this that vr and vz equal to 0. And also, we have said that there is no del vΘ del Θ, 

that is no change of Θ vΘ with respect to Θ, right. So, in this case, wherever vr's 

were there either directly or in the differential form, all got 0. 



Wherever vz were there either directly or in the form of derivative, all were 0. Only 

vΘ is not said to be 0. But anything with respect to v Θ having vr or vz is also 0. And 

we have been said that del vΘ del Θ is also equal to 0. So, from this information, 

understanding the problem, we have given the drawing, and we have found out 

three equations. 

One for the r component, one for the Θ component, and one for the z component. 

So, vr, vΘ, vz, we have three equations. We have one unknown, which is vΘ. So, 

one equation is good enough to solve it. So, out of these three, obviously, we will 

choose that 

 

which will lead to a solution, isn't it? It is not that we will arbitrarily try all the 

equations and find a solution. That will not help because if that is done, then we 

will have to do trial and error again and again. Obviously, we will pick the one which 

is the best solution, okay? So, today, now this time is up. 

 



So, thank you all for joining this class. We will solve the problem again in the next 

class. So, this is the application of the Navier-Stokes equation. How you are 

applying it to a given problem, right? Thank you very much. 


