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Hello friends, welcome back to this online certification course on Watershed Hydrology. I am
Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the
Indian Institute of Technology Kharagpur. We are in Module 9, this is Lecture Number 3, and
the topic is Flood Frequency Analysis.

In this lecture, we will discuss flood frequency analysis, introduce confidence limits, and talk
about risk, reliability, and safety factors.
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Now, coming to flood frequency analysis, if you remember, we discussed frequency analysis
during rainfall, and at that time, we mentioned that the techniques or methodology for
frequency analysis remain the same, be it rain, flood, or any other hydrologic variable. So, if
you recall, we discussed a general equation of hydrological frequency analysis given by Chow
in 1951. According to this equation, xt = x+ ko, where xt is the value of flood for a return
period T, which is the period we are interested in to find the peak flood. X bar is the mean of
the data series, o is the standard deviation of the data series, and £ is the frequency factor. So,
obviously, you need to have the flood data with you, and then, by fitting the distribution, we
can find out the mean and standard deviation. And of course, this £ depends on the return period
T and the assumed frequency distribution. So, for the frequency distribution and T value, we
can either calculate K or obtain it from the standard tables, which are available as we discussed
earlier in this lecture. Some of the commonly used frequency distribution functions are the
normal distribution, Gumbel's extreme value distribution, and the log Pearson type 3
distribution. Out of these, the normal and Gumbel's extreme value distributions were discussed
in Lecture 5 of Module 1, where we covered rainfall frequency analysis. However, we will still
go through an example of Gumbel's extreme value distribution and discuss the log Pearson type
3 distribution.



Flood Frequency Analysis

O The general eguation of hydrologic frequency ?nalysis (Chow, 1951):
::".-Xy- X+Ko /)

Vsl
Where, X; = value of flood for T year return period, X = mean of the data series, 0 =
standard deviation of the data series, and K = frequency factor

0 Kdepends on the return period (T) and the assumed frequency distribution
0 Some of the commonly used frequency distribution functions:

v Normal distribution z
v Gumbel's extreme value distribution
v Log-Pearson Type II Distribution

0 Normal and Gumbel's extreme value distributions are already discussed in Lecture - 5 of
Modue - 1, — B

The log Pearson type 3 distribution is commonly used in flood frequency analysis. It models
the distribution of inward maximum stream flow or flood data series and assumes that the
logarithm of the data follows a normal distribution. As we discussed earlier, we first fit a
distribution and try to convert it into a normal form, which is also the case with the log Pearson
type 3 distribution. Essentially, it assumes that the logarithm of the data follows a normal
distribution and is suitable for analysing inward maximum flood data series, although it can be
used for other time steps as well. Now, regarding the parameters of the log Pearson type 3
distribution, it is a three-parameter model consisting of a location parameter u, a scale
parameter o, and a shape parameter y. In contrast, the normal distribution is a two-parameter
distribution, with mean and standard deviation being the two parameters. Here, we have scale,
location, and shape parameters. The location parameter represents the horizontal shift in the
distribution, meaning it affects the horizontal scale. The scale parameter influences the spread
or variability of the distribution, while the shape parameter determines the skewness of the
distribution which relates to its peakedness, as we discussed earlier. So, these are the three
different parameters of the log Pearson type 3 distribution model.
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Flood Frequency Analysis
Log-Pearson Type-1Il Distribution
o Log-Pearson Type-lil distribution is commonly used in flood frequency analysis
u Itassumes that the logarithm of the ¢ dali follows the normal distribution

» Parameters of the Log-Pearson Type-lllgiitmlulion:

2. Scale Parameter (0): Influences the spread or variability of the distribution
pe- s

3. Shape Parameter (y): Determines the skewness of the distribution
4r = 23 b dd :

If x is a variate of a random hydrological series, then a series of Z variate will be created by
taking the logarithmic transformation of the series, denoted as Z=log(x). Essentially, if x is the
given series, we take the logarithm of that to obtain the transformed variate Z, which we refer
to as the Z series or the log-transformed series. For this z series, for any recurrence interval T,
the formula becomes Zt=z"+Kzot, where we are expressing this in terms of Z to represent that
z is a log-transformed data, and kz is the frequency factor, a function of the recurrence interval
t, and the coefficient of skewness Cs. The value of kz is obtained from standard tables available
for the log Pearson type 3 distribution. The skewness coefficient in the case of the log Pearson
type 3 distribution is calculated using the formula, and knowing the skewness and t, we can
obtain the value of kz from the standard tables available for the log Pearson type 3 distribution.
oz represents the standard deviation of the z variate sample, which is calculated using the
standard formula (z—z")2n—1n—1(z—z")2, where nn is the size of the sample, z~ is the mean of
the z values. The coefficient of skewness of the variate z is given by the relationship, which
again depends on zj~ mean, g, the variate itself, and the number of data points. So, nn represents
the number of data points or the size of the sample, z~ and o are the mean and standard deviation
of the transformed z data, and z is, of course, the variate.

After computing zt, the value of xt is calculated as xt=ezt. So, once we know Cs and the
recurrence interval, we can obtain the value of kz from the standard table. Using this, we can
then find the value of zt. The last line indicates that after computing zt using this generalized
form of hydrologic frequency analysis equation, the value of xt is calculated by transforming
it back using ezt. We will demonstrate this process through an example.



Flood Frequency Analysis
Log-Pearson Type-11I Distribution

If X is a variate of a random hydrology ufies then the series ot Z \/anate mll be created by the log
tumfomtlon of the series, with Z = Iog z

For lhis 2 sodu for any recurrence | Intefval T,

7 Zy =B+ Ky 0p D
Where — H:'/v‘f)
K, = Fi requency factor, the function of recurrence intervgr_’}nd th coemcient of skew c,}x, ;}
obtained tvom the standard ubh) ; — L

= Standard dtvmlon of the Z varilto sample = \,L%

Where N = swe_gf_ sample and Z =mean o of the Z value
N5 (Z-7)
Coefficient of skewness of variate Z,\ m >
After computing Z;, the value of X, Is calculated as: X, = antilog (Z,)

Now, let's consider Example 1: The annual maximum recorded floods in the river Vima, a
tributary of the River Krishna, at a gaging site from 1951 to 1977 are given below. The
maximum flood values recorded in cubic meters per second for each year are provided. Using
the log Pearson type 3 distribution, we need to estimate the flood discharge for return periods
of 100, 200, and 1000 years. We will find the flood values for these three different return
intervals. As discussed, we first calculate the variate z which equals log(x), for the given series,
as shown in the table.

-1
Flood Frequency Analysis

Example 1

The annual maximum recorded floods in the river Bhima, a tributary of the river Krishna, at a gauglng
station for 1951 - 1977 is given | below.

Year 1951 1 1952 1“! | 1954 1955 1956 1957 1958 1958

"‘(""“,’,‘:’“ 2047 | 3521 | 2009 | 4124 | 496 | 2047 | 5060 | 4003 | 3757
Year 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967
"‘(""‘.,'I':'“ 4798 | 4200 | 4es2 | s0s0 | esoo | 4366 | 3380 | 7826

Year 1969 | 1970 | 1971 1972 | 1973 1974 1975 1978

Max.flood | cooo | 3700 | 4175 | 2088 | 2700 | 3873 | 4se3 | e7en

(m?/s)

Using the Log Pearson Type-lll dlsttlbuuoo estimate the flood dischuqo lot a rotum period of:
(a) 100 years
(b) 200 years /
(c) 1000 years

So, here we have the x values listed. For different years, x values are listed, and we will take
the logarithm of each value to obtain the z value. So, for each year x and z values are listed.



The first step we take is to log-transform the data because the log Pearson type 3 distribution
assumes that the logarithm of the data series follows a normal distribution. Therefore, the first
thing we have to do is use the log transformation. Then, once we have the z series, we calculate
statistics like Z, g, n, and Cs. Here, n is 27 because the data range from 1951 to 1977. By using
this data, we can calculate z bar, which is 3.6071, the standard deviation which is 0.1427, and
the coefficient of skewness, which is 0.0443. To calculate these values, we need n, z, Z, g, and
Cs. Once we obtain the mean, we calculate the standard deviation, where we need the mean. To
calculate the coefficient of deviation, we need both the mean and 0. We can calculate these
using the standard formulas.

Flood Frequency Analysis

Solution:
First, the variate Z = log X is calculated for the given series, as shown in the table

Subsequently, statistics Z , g,and C,

Table. Variate Z are calculated,

Max. Max, Max. Here, N=27
Year | Flood X |Z=Jog X | Year |Flood X|Z = jog X| Year |Flood X|Z=log X| Meani=3.6071
(m¥/s) (m?¥s) (m's) O

Standard Deviation o, = 0,1427

1951 || 2947 | | 3.4694 | 1960,| 4798 | 3.6811 | 1969 | 6599 3.8195 Coeff. Of skewness C, = 0.0443

1952 | 3521 | 3.5467 |1961/| 4290 | 3.6325 | 1970 | 3700 | 3.5682
1953 || 2399 338 || 1962/ 4652 | 3.6676 | 1971 4175 | 3.6207 |
1954 || 4124 | | 3.6153|| 1983/ 5050 | 3.7033 | 1972|| 2988 | 3.4754 |
1955 | 3496 | | 3.5436 | 1964| 6900 | 3.838d | 1973/| 2709 | 3.4328 |
1956 | | 2047 | | 3.4694] | 1965 | 4366! | 3.6401 | 1974 | 3873| | 3.588

1957/ | 5060 | | 3.7042) | 1966 | 3380 | 3.5285 | 1975 | 4593 | 3.6621
1958 | 4903/ | 3.6905 || 1967 | 7826/ | 3.8935 | 1976 | 6761 3.83

1959 | 3757 | 3.5748 '[ 1968 | 3320 | 3.5211 | 1977 | 1971 | 3.2947

Now, the value of K- for a given tz and Cs is obtained from the log Pearson type 3 table. There
are two tables provided; this is only a sample table. The key t value for Pearson type 3
distribution is for positive skewness where Cs is positive and for negative skewness where Cs
is negative. In our case, Cs is positive, so we will follow this table to obtain the value of K. For
Cs =10.0443 and = 100, as we have been asked to calculate for 100 years, 200 years and 1000
years. For each year and each of these return periods, we have to obtain the K- value from the
table. So, for a return period of 100 years, our Cs value lies between 0 and 0.1 with our value
being 0.0443. For 100 years, the K- values provided in the table are 2.4 and 2.326. Hence, we
need to interpolate the value, and upon interpolation, we obtain K- as 2.358 for a return period
of 100 years. Similarly, for 200 years, the interpolated value lies between 2.576 and 2.670,
resulting in Kz being 2.616. Though the value for 1000 years is not shown in this table, there is
a separate table available and from there, we find that K- is 3.152 for a return period of 1000
years. Thus, we now have the K values.
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Flood Frequency Analysis
Solution:

Then, the values of K, for given T and q. are obtained from the Log Pearson Type-lll distribution table
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Having obtained Z, o and K- for different return periods, we can use the formula to calculate z
values for 100, 200, and 1000 years. The values obtained are 3.9436, 3.9804, and 4.0569,
respectively. To obtain the peak values, we need to reverse the logarithmic transformation by
taking the antilog. Upon doing so, the values are found to be 878, 9559 and 11400 respectively.
Therefore, the 100-year flood for the given data series is 878 cubic meters per second, the 200-
year flood is 9559 cubic meters per second, and the 1000-year flood is 11400 cubic meters per
second. So, these are the values we calculated for the given data series using the log Pearson
type 3 distribution. This is how we apply the log Pearson type 3 distribution function in our
calculations.

Flood Frequency Analysis

Solution:
The flood discharge for a given T is calculated as shown below:
72=3.60712

0,= 01427

/ —— s
T (years) K, K, o, -";z, e K, o,) {\\x'—' &%@
100 2.358 0.3365 3.9436 8782
200 2,616 0.3733 3.9804 9559
1000 3.152 0.4498 4.0569 11400~ |

The 100-year flood is 8782 m'/s
The 200-year flood is 9559 mY/s
The 100year flood is 11400 m’/s



Now, let's move on to confidence limits. Confidence limits offer a way to quantify the
uncertainty inherent in flood frequency analysis. They represent a statistical range around
estimated flood quantiles, expressing the uncertainty associated with these predictions.
Confidence limits acknowledge the variability in data and modelling, enabling more informed
decisions on structure design, risk management, emergency preparedness, and policy
development. Essentially, what we are saying is that we have already calculated the value of
xt. For example, in the previous problem, we calculated a certain value for 100 years, let's say
around 9000, and similarly for 200 years. For 1000 years, it was around 11500, let's assume.
These were absolute values calculated by this distribution. However, we are not very sure of
the distribution function or the data or the parameters we have calculated. All these things are
uncertain. To address this uncertainty, we obtain values around these estimated values. These
values indicate that within this range, this particular estimated value may range over, for
instance, for this 900, we may get 1100 and 800 as two limits. So, that means, if the flow value
1s between 800 and 1100, as we have calculated, this is the confidence limit within which this
value may range. We have to be careful while making decisions. The x: variate for a given
return period is determined using hydrologic frequency analysis. Subsequently, the confidence
limit on xt estimates is determined. As I mentioned, for 900, it could be 1100 and 800. The
confidence limit indicates the range within which the true value is likely to lie with a specific
probability. Of course, when we estimate this confidence limit, we have to assign a particular
probability, and the confidence interval enhances the statistical reliability of the x: estimate.

Confidence Limit

2 Confidence limit offers a way to quantify the uncertainty inherent in flood frequency analysis

o It represents a statistical range around estimated flood quantiles, expressing the
uncertainty associated with these predictions B

o It acknowledges the variability in data and modelling, enabling more informed decisions ‘
on infrastructure design, risk management, emergency preparedness, and policy
development

a Xy (variate) for a given return period is determined using the hydrgloqlg: : frequency aiarysls

4 Subsequently, the confidence limit on X; estimates is determined

a  Confidence limit indicates the range within which the true value is likely to lie with a specific
probability

So, for a confidence probability CC, the confidence interval of a variate xtx¢ is bounded by
values x1 and x2, given by this relationship: x1 or x2 is xt* fc sext + fc Se, where f« is a function
of confidence probability C determined using the table of normal variates, which is given here.
Depending on whether you take a confidence probability of 50, 80 or 95, your f. value will
vary, and this fc value can be taken from this table. Another term used here in this equation is
SeSe, which is referred to as the probable error and is given by this relationship: Bon(n—1)
Bn(n—1)o. Here, oo is the standard deviation, n is the number of data points. We already know



this value, and BB is a function of k. So, it is the square root of 1 plus 1.3k plus 1.1k squared,
and k is the frequency factor. We have already discussed how to determine this frequency
factor. oo is the standard deviation, and nn is the sample size. So, basically, while deciding or
computing the value of xt, we will know all these things. We will know k, we will know xt, and
the only thing we have to decide is the confidence probability and get the value of cc from here.
Otherwise, with whatever we know, we can calculate the value of Se. The frequency factor can
be computed by this formula, depending on the probability function. This is the one used for
Gumbel's distribution. Otherwise, we know how to determine that for the log Pearson type 3
distribution. Just now, we discussed earlier also we discussed for normal distribution that the
normal table could be used. We also showed that there are direct equations which can be used
for finding out the value of k.

]
Confidence Limit

o For a confidence probability ¢, the confidence interval of the variate X; is bounded by
values X, and X, given by: e —.
i == ( Xya= Xy £1(c)8, )
Where, f{c) = function of the confidence pi’obéﬁjlity, ¢, determined using the table
of normal variates o o

(%) 50 7 68 80— 90 95 | 99 gl
fc) ) | 0674 1.00 1.282 1.645 1.96 2.58
Here, (S, # probable error = b':—'.;;!__é"_""

i ool SRSV U
b=J14 13K+ 11K?

Where K = frequency factor, o, ,' = standard ggvrlilvion of the sample, N = sample size

Frequency factor is computed by
daanam ";&i‘;"--. Y, = reduced value of the variate
(KmI—s ¥ ¥, = mean reduced variate
5, = standard deviation in distribution

So, let's take an example here. The following data gives flood data from the Ganga River in
Uttar Pradesh. The length of the record is 92 years, the mean annual flood is 6437 cubic meters
per second, and the standard deviation is 2951. Estimate the 100 and 1000-year flood of the
river using Gumbel's method, and what is the 95 percent confidence interval for the predicted
value? So, we have to first get the xt value and then the 95 percent confidence interval on the
estimated xt value. These are the two components we have to do.
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Confidence Limit

Example 2
The following data gives flood data of Ganga river in Uttar Pradesh,

River Length of record (years) Mean annual flood (mfs) |o,,
Ganga -~ |92 6437 2951

(a) Estimate tpe 100 and 1900 year ﬂoogl_ 9_' thg river using Gumbel's method. -~

(b) What is the 95% confidential interval for the predicted valuog?

So, let's start with the 100-year flood using Gumbel's method. This is the generalized equation
we know, where the kk value is given by this relationship. Just now we discussed where yt is
determined by this. It's a log-transform variate given by this relationship,
—In(t/(t—1))-In(#/(+—1)), where it is just a function of tz. So, for tt equals to 100 years,
y100y100 can be calculated, and it comes out to be 4.6.

Confidence Limit
Solution

(a) For 100 year flood using Gumbel's method

(/x,- X+K a,,,v

T = return podod (here T = 100)

S0, Yo =-In(in(12%) # "u"‘ /

10041

Then, for sample size 92, that is, ¥ and Sn values can be read from this table. Here, we have
been given the values for 90 and 100. So, ¥ is 0.5586 and 0.560, which will lie between these
because our sample size is 92. So, we have to interpolate and through interpolation, we get a



value of 0.5589. Similarly, S» has to be between 1.207 and 2.065. We have to interpolate and
here we get for 92 S equals to 1.2020.

Confidence Limit

Solution

N S
(a) For sample size 92 /=

N 10 15 [zo ]zs 30 40 50
Y, |04952 |05128 |0.5236 |0.5309 |0.5362 |0.5436 |0.5485
Sn -~ | 09457 |1.0206 | 1.0628 | 1.0915 |1.1124 |1.1413 |1.1607

P <
N |e0 |70 |80 [0 [100 ~[200 ([S00 |«

¥, |0.5521 [0.5548 |0.5569 |0.5586 |0.5600 | 0.5672 |0.5724 | 0.5772
Sn |1.1747 |1.1854 |1.1938 [1.2007 |1.2065 |1.2360 |1.2588 | 1.2826

~_
¥, = 0.5589 and'S, = 1.2020 \ (using Interpolation between N = 90 and N = 100)

So, that means, now we know we can calculate kioo because we know yi00, we know y, we
know Sn. So, putting the required values, we get k100 equals to 3.362. Putting in this
generalized equation, all the knowns because we know y, we know go because these values
can already be given. So, x100 comes out to be 16,358.3 cubic meters per second. So, that is the
magnitude of the flood for a 100-year return period. The same procedure can be adopted for a
1000-year flood, and for a 1000-year flood, Y1000 comes out to be 6.907. Samples are 92, so y
and Sn values will remain the same. So, kiooo comes out to be 5.2813, and then using the
generalized equation we get kx1000 as 22,022.1 cubic meters per second. So, the first part is
that using the Gumbel's distribution, we have obtained the flood magnitude for 100 years and
1000 years return period. So, these two things we have done first.



Confidence Limit

Solution
Similarly,
o P For 1000 year flood,
Y=Y, _ 46-05589 , W

Koo 37 Sa—n 1302 Y1000 = - In (In(5572)) = €.907
4 K:,; =3.362 Again for sample size = 92 )

Putting all known values in ¥.=0.5589 and S, = 1.2020

Xi00= X:f.ﬁ %1 ) Sq."k.a.,) "mss: =% - o-ao-: ;:zssaa

Xypo= 6437 + 3.362 x 2951 \ 4_/-,:-/- — )ﬂ

7 T eaan Kyooo & 5.2813

/ Xpoo = 16358 m_} _ 1o00 % 5.2813
"7—\,___ﬂ‘_ e Hence,

X000 = X + Kyopo 0,5 = 6437 + 5,2813 x 2951

7 Ko ® 2202208 —
Lo B =
e —————————

Now, we will go into the confidence interval, basically, and so, the 95 percent confidence
interval for the 100-year flood in the Ganga River. We have to use this formula where f. has to
be taken from this table. So, it comes out to be 1.96. So, f¢ is 1.96, probable error Sc is Bon—1
, and already we have calculated the value of kk. So, putting the value of kk in here, we can
calculate the value of B equals to 4.22.

Confidence Limit

Solution

(b) 95% confidggﬁal interval for 100-year flood in river Ganga
(X=X t flc)s.)
Here,

fc) = 198 (taken from Table below)

c (%) 50 68 80 90 95 99
f(c) 0.674 1.00 1.282 1645 | 196. 1 258
Now, S, = probable error =/ 'l"’il)

\

Where, b= 1 + 13K + 1.1K* = /1 + 1.3 x 3.362 + 1.1 x 3.3627 = 4.22

And once BB is known, we can calculate the value of ScSc as 1298. These values are already
given to us. So, it comes out with 18,902 and 13,813 cubic meters per second. So, for a 100-
year flood which the magnitude was 16,358, the upper and lower confidence limits are 18,902
and 13,813. So, that means, this confidence limit says that though we have estimated a value



of 16,358, but keeping the uncertainty, this value could lie anywhere between these two limits.
Similarly, for a 1000-year flood, we will calculate the value of B, and then we will calculate
the value of x1 and x2, and so, for x1, it is 25,767, and x2 is 18,272. So, the upper limit for a
1000-year flood is 25,767 and 18,272. So, this is how we can once we know the x: value, we
can also determine the confidence limits on the values.

Confidence Limit

Solution -
29517 oo
S, 2422 X —— = 1298.33 =/1298 -
e vozZ \ 7VL_ e
\ /7 7~

Putting all values in'X,,= X, tf(c)S, 9]

X,= 16358 + 1.96 x 1298 = 18902 m'/s 2 Thus, for a 1Q(.);y_e'qr”!l>ood;'_1163§§_nﬂx, the upper and
ARG lower confidence limits are 18902 and 13813 m’/s
X, = 16358 - 1.96 x 1298 = 13813 m/s_~ P ~ ==

Similarly, confidence limit for 1000-year flood in river Ganga

Do 1+ 13K+ 11K =141.3x52813+ 1.1x5.28132

2951

Vil
X, =22022 + 1.96 x 19106 = 252§Z~m‘!s: X,;=22022-1.96 < 19106 = 112_?24"’75

b=621,5 =621 x =1910.6

The upper and lower confidence limits for a 1000-year flood are 25767 and 18272 m'/s

Now, we go into risk reliability and safety factor. Risk refers to the probability of occurrence
of a specific event multiplied by the consequences or impact associated with that event. So,
obviously, when we talk in terms of risk, that means, there is some chance of a mishap and we
are ready to face the consequences in case of failure. That is the risk we are talking about. It is
often expressed as the probability of a flood event exceeding a certain magnitude, combining
the likelihood of occurrence with the potential consequences, providing a comprehensive
measure of the overall flood risk in a particular area. So, obviously, you are fully aware of the
consequences when you take a risk actually. The probability of occurrence of an event x>x: at
least once over a period of unsuccessful years is called the risk. So, risk is given by R"R", which
is 1—1— the probability of non-occurrence of the event x>x: in nn years or R R is 1—-(1-P)n,
and it is in terms of the recurrence interval or return period 1—(1—t)n, where P is the probability
and tt is equal to 1/t or the recurrence interval. So, this is basically what we get.



Risk, Reliability and Safety Factor
Risk

+ Risk refers to the probability of occurrence gf a speiﬁc evejl muniplieq by the consequences
of Impacts associated with that event i i e

+ Itis often expressed as the probability of a flood event exceeding a certain magnitude

+ It combines the likelihood of occurrence with the potential consequences, providing a
comprehensive measure of the overall flood risk in a particular area

The probability of occurrence of an event (x = x;) at least once over a period of n successive
years is called the risk, R —

Thus, the risk is given by

R =1 - (probability of non-occurrence of the event x = xy in n years)
- ’ . — . -

= 1 a
= - - " - - - v )it
R=1-0-P"=1-(1-3

o

Where, P = probability P (x = x;) 4 :

f
/

And if you talk about reliability, it's the measure of the dependability or trustworthiness of a
system or structure in withstanding extreme events. So, how reliable the design is, that is what
we are talking about. In the previous case, we thought about what risk we are going to take; in
this case, how reliable our system is. So, just two different things we are talking about, often
associated with the reliability of infrastructure or flood protection measures. Reliability
estimates are crucial in the design and operation of hydraulic structures to ensure they meet
specified safety standards, and reliability is basically defined as 1-R, where R, as you know, is
nothing but risk. So, risk is calculated, and then 1-risk is reliability. So, it is 1—1ta. So, the
appropriate design return period for a structure is contingent upon the level of risk deemed
acceptable. So, how much risk you are going to take, of course, depends on the recurrence
interval we are going to adopt for a particular design.
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Reliability

+ Reliability is a measure of the dependability or trustworthiness of a system or structure in withstanding
extreme events

+ Itis often associated with the reliability of infrastructure or flood protection measures

* Reliability assessments are crucial in the design and operation of hydraulic structures to ensure
they meet specified safety standards.

)

- The reliability R, is defined by o

S _)] > l» \\'
(\i-?.r 1-97\/(1 - ;_)’-4'

The appropriate design return period for Yﬂmclure is contingent upon | the level of risk deemed
acceptable ==

Then we come to the safety factor, which is here. The safety factor is a numerical factor applied
to the design safety capacity of a structure to provide a margin of safety against uncertain,
unexpected conditions. Safety factors are used in engineering design to account for
uncertainties in flood frequency estimates and other variables. So, what safety you are going
to provide in your design, that is the safety factor. The parameter mm is applied to the
development project, and the safety factor for parameter mm, Sfm, is the ratio of the actual
value of the parameter adopted in the design to the value of parameter mm obtained from
hydrologic considerations, so Cam by Chm. So, basically, this parameter value we are
obtaining after analysing the data, but over and above that, we want to provide some kind of
safety. So, that is why we adopt a higher value of Cam, and that is how this safety factor is
there. Parameter mm includes items such as flood discharge magnitude, maximum river stage,
reservoir capacity, and freeboard. So, anything can be used as a parameter, and the safety
margin is the difference between Cam and Chm. So, this is the actual value, and this is the
adopted value. So, the difference between the two is referred to as a safety margin.
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") Salely Factor

* The safety factor is a numerical factor applied to the design capacity of a structure to

provide a margin of safety against uncertainties and unexpected conditions

* Safety factors are used In engineering design to account for uncertainties in flood
frequency estimates and other variables

* A safety factor with parameter M is applied to the development project

Safety factor (for parameter M) = (SF),, )
— - = >
\ — . e D T
o Nt value of puramEler M adopted bn the destghof peojects l_,,,_,‘*i
Valwe of parumeter M obtaloed feom hydrological comsideration | (...*/

* Parameter M Includes items such as flood discharge magnitude, maximum river stage,
reservoir capacity and lreet;oaﬂ
Safety margin is the difference between C, and C,,

Let's take an example here: a bridge is designed with a projected lifespan of 25 years for a flood
magnitude with a return period of 100 years. What is the hydrological design risk? What is the
reliability of the structure? If a 10 percent risk is deemed acceptable, what return period should
be chosen? That is what we are talking about. So, we have three different bits. The risk, as we
already know, 7 is 1—tn. Here, nn is because the projected lifespan is 25 years, so we are
talking about n=25 years, and the return period considered is 100 years, so t=100 years. Putting
values of tt and nn here, we get v =0.222, which simply means that the inbuilt risk in this
design is 22.2 percent. So, when we are designing this structure for 25 years with a 100-year
return period, then we have an inbuilt risk of 22.2 percent that we are willing to take; that is
what this means. Now, coming to bit B, reliability, and we already know the reliability is
nothing but 1-r". So, that means 1—0.222 or 0.7780.778, which simply means the reliability of
the design is 77.8 percent. So, our design, if we use this design, is 78 percent reliable.
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A bridge is gn_ggn-d with a projected | Mupun,df 25 y:)nd for a flood magnitude with a return
period of 100 years.",
a) What is the hydrologic design risk?
b) What is the reliability of structure?
c) I a10% risk is deemed acceptable, what return period should be chosen?
Solation:
(a) The risk, R =1 - (1 - 1)"/’
Here n - 25 ynn andT- 100 yuj

R=1 P -0222

100 s /—:'-K'-‘ 3
Hence, the inbullt risk in design is 22.2%

(b) The Rellability, R, =1-R=1-0222=0.778

—_——
The reliability of the design is’ﬁ 8% /

And then, if r~ is 10 percent or 0.1, the appropriate return period can be found using this
relationship, and from here, we get t=238. So, that simply means, earlier we saw that when we
were using a return period of 100 years, our risk was 22 percent. So, if you want to take a risk
of only 10 percent, then you have to choose a return period of 240 years for designing a
structure. And that is why, as we discussed earlier, when we talked about large structures, we
take t=1000 years, I mean, the lifespan may be 100 years, but we take a return period of 1000
years because we do not want to take that higher risk, and we want to minimize the risk in that
particular design. So, for a 10 percent capital risk, the bridge will have to be designed for a
flood having a return period of 240 years. So, with this, if you take r =1 percent, then obviously,
you can guess what will be the return period, which will be much, much higher.

-1
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Solution: P

(c) W R =10% = 0.1,

The appropriate return period can be found as follows:

0am1-(1- ;D

SIS e D

->(1--)“-09 N

=> th 238 years/(sw 240 years) /
P
Hence, for a 1035_:c}qp_glabl»q*m.k_bm bndge will have to be designed for a flood having a return
period_of 240 years,




Let's take another example: the Damodar River's annual flood data from 1980 to 2018 reveals
an average annual discharge of 9750 cubic meters and a standard deviation of 4280 cubic
meters per second. In planning a bridge over this river, a 10 percent acceptable risk over its 50-
year expected lifespan is chosen. Utilizing Gumbel's method, estimate the flood discharge for
the design with an adopted actual flood value of 41000 cubic meters per second. In the design,
determine the safety factor and safety margin concerning the maximum flood discharge. So,
obviously, in this case, the risk value is 0.1; all other data is given, and we have to first find out
the flood discharge. Then, of course, because we have already designed with a certain value,
we need to calculate the safety margin. So, obviously, the first thing we have to do is calculate
the value of Te, the return period, which comes out to be 475. So, for this 10 percent risk, the
lifespan, or rather the return period, has to be 475 years. So, obviously, we need to estimate the
flood magnitude for a return period of 475 years using Gumbel's method.

B
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Example 4
The Damodar River's annual flood data from 1980 to 2018 reveals an average annual discharge of

9,750 m*/s and a standard devlaﬂon_oﬂ,znn mls. In Bla?nlng a bridge over this river, a 10%
acceptable risk over its 50-year expected lifespan is chosen.

(a) Utilising Gumbel's method, estimate the flood discharge for design.

(b) With an adopted actual flood value of 41,000 m¥s in the design, determine the safety factor
and safety margin concerning the maximum flood discharge.

Solution:

) Given, the risk, R = 0.10;and the lifespan, n = 50 years

Hence, the applicable return period is

0A=1-(1-7)%
(1-5%"=09 . )
A "/
7'/- 47619 = appfox‘,"' 47? _y__elrs/__-;_/“f
The ﬂoodA mapuitude for the return‘penod_ot 475 years is estimated t{y Glnbelj methoq.

And for Gumbel's method, we know that we need y and Sn, and our nn value is 39 years. So,
from here, with 39 years, we have to interpolate the values. Thus, we obtain y bar as 0.543 and
Sn as 1.1388. The y: value, which we need to calculate the variate in terms of Te, which is 475,
comes out to be 6.163. From this equation, we can calculate the frequency factor as 4.9344.
Given X as 9750 and standard deviation as 4280, the flood magnitude for a 475-year return
period using Gumbel's method comes out to be 30,869 cubic meters per second. Therefore, for
a 10 percent risk with the given data, our flood magnitude is 30,869 cubic meters per second.
Thus, the design flood is this value.
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P e
Solution : N 10 15 20 25 30 40 50 ]
N = 39 years (1980 - 2018) .~ & V.~ | 04952 | 05128 |05236 |0.5309 05362 | 0.5438 | 0.5485

From the table, by interpolation, > '
Sn | 09457 | 10206 |1.0628 |1.0915 | 1.1124 | 1.1413 | 1.1607
¥,=0543and S, =1.1388 ——r

075"‘/ ¥ o
e £61623

yr3-dn (In () = 4n (In (

_— -
Y-V, _ 61623 0543 -
el = et )
Frequency Factob L~ T ﬁ 49349,

Given, X ' =9,750 m*s and 0, , = 4,280 m'/s

Hence, flood magnitude for 475 years return period,
X;= X+Kao,, )
= 9750 + 4.9344 x 4280 30,869 m’ls/-/

/ g
Thus, for a 10% risk, the design fiood is 30,868 m¥s

Now, regarding bit B, the safety factor and safety margin: the adopted flood magnitude is
41,000 cubic meters per second, whereas the calculated hydraulic design is 30,869. Therefore,
the safety factor is the adopted flood magnitude divided by the hydrological design flood,
which results in 41,000 divided by 30,869. Thus, the safety factor comes out to be 1.33, and
the safety margin is the difference between the two, that is, the adopted flood magnitude and
the hydrologic design flood. Consequently, that comes to be 10,131 cubic meters per second.
Hence, we have adopted a safety factor of 1.33 and a safety margin of around 10,000 cubic
meters per second in the design. So, the safety factor and safety margin in the design are 1.33
and 10,131 cubic meters per second, respectively.

| U N
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Solution :
('!-;)Now. the adopted flood value in design is 41,000 m*s against the estimated design flood
“(hydrological ‘design flood) of 30,869 m’/s

/ -
Adopted flood magnitude 11000

Hme' Salety 'ac.“ = Mydrotogical design flosd s lu“\l-‘lgslyi_ =
7 .
Also, Safety margin = (Adopted flood Eagnitude - Hydrological design flood
= 41,000 - 30,869 10,131 mvs?z
| hp e

-

A ———

Thus, the safety factor and safety margin in the design are 1.33 and 10,131 m¥s, respectively



With this, we come to the end of this lecture. We have carried out flood frequency analysis
using the log Pearson type 3 method. We have also seen how to calculate the risk, reliability,
and safety factor or safety margin in a particular design. Please give your feedback and feel
free to raise any questions or doubts. We shall be happy to answer them on the forum.

Thank you very much.




