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Hello friends, welcome back to this online certification course on Watershed Hydrology. I am 

Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the 

Indian Institute of Technology Kharagpur. We are in Module 9, this is Lecture Number 3, and 

the topic is Flood Frequency Analysis. 

 

In this lecture, we will discuss flood frequency analysis, introduce confidence limits, and talk 

about risk, reliability, and safety factors. 



 

Now, coming to flood frequency analysis, if you remember, we discussed frequency analysis 

during rainfall, and at that time, we mentioned that the techniques or methodology for 

frequency analysis remain the same, be it rain, flood, or any other hydrologic variable. So, if 

you recall, we discussed a general equation of hydrological frequency analysis given by Chow 

in 1951. According to this equation, 𝑥𝑡 = 𝑥+ 𝑘𝜎, where 𝑥𝑡 is the value of flood for a return 

period T, which is the period we are interested in to find the peak flood. X bar is the mean of 

the data series, 𝜎 is the standard deviation of the data series, and k is the frequency factor. So, 

obviously, you need to have the flood data with you, and then, by fitting the distribution, we 

can find out the mean and standard deviation. And of course, this k depends on the return period 

T and the assumed frequency distribution. So, for the frequency distribution and T value, we 

can either calculate K or obtain it from the standard tables, which are available as we discussed 

earlier in this lecture. Some of the commonly used frequency distribution functions are the 

normal distribution, Gumbel's extreme value distribution, and the log Pearson type 3 

distribution. Out of these, the normal and Gumbel's extreme value distributions were discussed 

in Lecture 5 of Module 1, where we covered rainfall frequency analysis. However, we will still 

go through an example of Gumbel's extreme value distribution and discuss the log Pearson type 

3 distribution. 



 

The log Pearson type 3 distribution is commonly used in flood frequency analysis. It models 

the distribution of inward maximum stream flow or flood data series and assumes that the 

logarithm of the data follows a normal distribution. As we discussed earlier, we first fit a 

distribution and try to convert it into a normal form, which is also the case with the log Pearson 

type 3 distribution. Essentially, it assumes that the logarithm of the data follows a normal 

distribution and is suitable for analysing inward maximum flood data series, although it can be 

used for other time steps as well. Now, regarding the parameters of the log Pearson type 3 

distribution, it is a three-parameter model consisting of a location parameter μ, a scale 

parameter σ, and a shape parameter 𝛾. In contrast, the normal distribution is a two-parameter 

distribution, with mean and standard deviation being the two parameters. Here, we have scale, 

location, and shape parameters. The location parameter represents the horizontal shift in the 

distribution, meaning it affects the horizontal scale. The scale parameter influences the spread 

or variability of the distribution, while the shape parameter determines the skewness of the 

distribution which relates to its peakedness, as we discussed earlier. So, these are the three 

different parameters of the log Pearson type 3 distribution model. 



 

If 𝑥 is a variate of a random hydrological series, then a series of Z variate will be created by 

taking the logarithmic transformation of the series, denoted as Z=log(x). Essentially, if 𝑥 is the 

given series, we take the logarithm of that to obtain the transformed variate Z, which we refer 

to as the Z series or the log-transformed series. For this 𝑧 series, for any recurrence interval T, 

the formula becomes Z𝑡=𝑧ˉ+K𝑧𝜎t, where we are expressing this in terms of Z to represent that 

z is a log-transformed data, and 𝑘𝑧 is the frequency factor, a function of the recurrence interval 

𝑡, and the coefficient of skewness Cs. The value of 𝑘𝑧 is obtained from standard tables available 

for the log Pearson type 3 distribution. The skewness coefficient in the case of the log Pearson 

type 3 distribution is calculated using the formula, and knowing the skewness and 𝑡, we can 

obtain the value of 𝑘𝑧 from the standard tables available for the log Pearson type 3 distribution. 

𝜎𝑧 represents the standard deviation of the 𝑧 variate sample, which is calculated using the 

standard formula (𝑧−𝑧ˉ)2𝑛−1n−1(z−zˉ)2, where 𝑛n is the size of the sample, 𝑧ˉ is the mean of 

the 𝑧 values. The coefficient of skewness of the variate 𝑧 is given by the relationship, which 

again depends on 𝑧𝑗ˉ mean, 𝜎, the variate itself, and the number of data points. So, 𝑛n represents 

the number of data points or the size of the sample, 𝑧ˉ and 𝜎 are the mean and standard deviation 

of the transformed 𝑧 data, and 𝑧 is, of course, the variate. 

After computing 𝑧𝑡, the value of 𝑥𝑡 is calculated as 𝑥𝑡=𝑒𝑧𝑡. So, once we know 𝐶𝑠 and the 

recurrence interval, we can obtain the value of 𝑘𝑧 from the standard table. Using this, we can 

then find the value of 𝑧𝑡. The last line indicates that after computing 𝑧𝑡 using this generalized 

form of hydrologic frequency analysis equation, the value of 𝑥𝑡 is calculated by transforming 

it back using 𝑒𝑧𝑡. We will demonstrate this process through an example. 



 

Now, let's consider Example 1: The annual maximum recorded floods in the river Vima, a 

tributary of the River Krishna, at a gaging site from 1951 to 1977 are given below. The 

maximum flood values recorded in cubic meters per second for each year are provided. Using 

the log Pearson type 3 distribution, we need to estimate the flood discharge for return periods 

of 100, 200, and 1000 years. We will find the flood values for these three different return 

intervals. As discussed, we first calculate the variate 𝑧 which equals log(x), for the given series, 

as shown in the table. 

 

So, here we have the 𝑥 values listed. For different years, 𝑥 values are listed, and we will take 

the logarithm of each value to obtain the 𝑧 value. So, for each year 𝑥 and 𝑧 values are listed. 



The first step we take is to log-transform the data because the log Pearson type 3 distribution 

assumes that the logarithm of the data series follows a normal distribution. Therefore, the first 

thing we have to do is use the log transformation. Then, once we have the 𝑧 series, we calculate 

statistics like 𝑧̅, 𝜎, 𝑛, and 𝐶s. Here, 𝑛 is 27 because the data range from 1951 to 1977. By using 

this data, we can calculate 𝑧 bar, which is 3.6071, the standard deviation which is 0.1427, and 

the coefficient of skewness, which is 0.0443. To calculate these values, we need 𝑛, 𝑧, 𝑧̅, 𝜎, and 

𝐶s. Once we obtain the mean, we calculate the standard deviation, where we need the mean. To 

calculate the coefficient of deviation, we need both the mean and 𝜎. We can calculate these 

using the standard formulas. 

 

Now, the value of 𝐾z for a given 𝑡t and 𝐶s is obtained from the log Pearson type 3 table. There 

are two tables provided; this is only a sample table. The key 𝑡 value for Pearson type 3 

distribution is for positive skewness where 𝐶s is positive and for negative skewness where 𝐶s 

is negative. In our case, 𝐶s is positive, so we will follow this table to obtain the value of 𝐾z. For 

𝐶s = 0.0443 and t = 100, as we have been asked to calculate for 100 years, 200 years and 1000 

years. For each year and each of these return periods, we have to obtain the 𝐾z value from the 

table. So, for a return period of 100 years, our 𝐶s value lies between 0 and 0.1 with our value 

being 0.0443. For 100 years, the 𝐾z values provided in the table are 2.4 and 2.326. Hence, we 

need to interpolate the value, and upon interpolation, we obtain 𝐾z as 2.358 for a return period 

of 100 years. Similarly, for 200 years, the interpolated value lies between 2.576 and 2.670, 

resulting in 𝐾z being 2.616. Though the value for 1000 years is not shown in this table, there is 

a separate table available and from there, we find that 𝐾z is 3.152 for a return period of 1000 

years. Thus, we now have the 𝐾z values. 



 

Having obtained 𝑧̅, 𝜎 and 𝐾z for different return periods, we can use the formula to calculate 𝑧t 

values for 100, 200, and 1000 years. The values obtained are 3.9436, 3.9804, and 4.0569, 

respectively. To obtain the peak values, we need to reverse the logarithmic transformation by 

taking the antilog. Upon doing so, the values are found to be 878, 9559 and 11400 respectively. 

Therefore, the 100-year flood for the given data series is 878 cubic meters per second, the 200-

year flood is 9559 cubic meters per second, and the 1000-year flood is 11400 cubic meters per 

second. So, these are the values we calculated for the given data series using the log Pearson 

type 3 distribution. This is how we apply the log Pearson type 3 distribution function in our 

calculations.  

 



Now, let's move on to confidence limits. Confidence limits offer a way to quantify the 

uncertainty inherent in flood frequency analysis. They represent a statistical range around 

estimated flood quantiles, expressing the uncertainty associated with these predictions. 

Confidence limits acknowledge the variability in data and modelling, enabling more informed 

decisions on structure design, risk management, emergency preparedness, and policy 

development. Essentially, what we are saying is that we have already calculated the value of 

𝑥t. For example, in the previous problem, we calculated a certain value for 100 years, let's say 

around 9000, and similarly for 200 years. For 1000 years, it was around 11500, let's assume. 

These were absolute values calculated by this distribution. However, we are not very sure of 

the distribution function or the data or the parameters we have calculated. All these things are 

uncertain. To address this uncertainty, we obtain values around these estimated values. These 

values indicate that within this range, this particular estimated value may range over, for 

instance, for this 900, we may get 1100 and 800 as two limits. So, that means, if the flow value 

is between 800 and 1100, as we have calculated, this is the confidence limit within which this 

value may range. We have to be careful while making decisions. The 𝑥t variate for a given 

return period is determined using hydrologic frequency analysis. Subsequently, the confidence 

limit on 𝑥t estimates is determined. As I mentioned, for 900, it could be 1100 and 800. The 

confidence limit indicates the range within which the true value is likely to lie with a specific 

probability. Of course, when we estimate this confidence limit, we have to assign a particular 

probability, and the confidence interval enhances the statistical reliability of the 𝑥t estimate. 

 

So, for a confidence probability 𝐶C, the confidence interval of a variate 𝑥𝑡xt is bounded by 

values 𝑥1 and 𝑥2, given by this relationship: 𝑥1 or 𝑥2 is 𝑥t ± 𝑓c 𝑆𝑒xt ± fc Se, where 𝑓c is a function 

of confidence probability 𝐶 determined using the table of normal variates, which is given here. 

Depending on whether you take a confidence probability of 50, 80 or 95, your 𝑓c value will 

vary, and this 𝑓c value can be taken from this table. Another term used here in this equation is 

𝑆𝑒Se, which is referred to as the probable error and is given by this relationship: 𝐵𝜎𝑛(𝑛−1) 

Bn(n−1)σ. Here, 𝜎σ is the standard deviation, 𝑛 is the number of data points. We already know 



this value, and 𝐵B is a function of 𝑘. So, it is the square root of 1 plus 1.3k plus 1.1k squared, 

and 𝑘 is the frequency factor. We have already discussed how to determine this frequency 

factor. 𝜎σ is the standard deviation, and 𝑛n is the sample size. So, basically, while deciding or 

computing the value of 𝑥t, we will know all these things. We will know 𝑘, we will know 𝑥t, and 

the only thing we have to decide is the confidence probability and get the value of 𝑐c from here. 

Otherwise, with whatever we know, we can calculate the value of 𝑆e. The frequency factor can 

be computed by this formula, depending on the probability function. This is the one used for 

Gumbel's distribution. Otherwise, we know how to determine that for the log Pearson type 3 

distribution. Just now, we discussed earlier also we discussed for normal distribution that the 

normal table could be used. We also showed that there are direct equations which can be used 

for finding out the value of 𝑘. 

 

So, let's take an example here. The following data gives flood data from the Ganga River in 

Uttar Pradesh. The length of the record is 92 years, the mean annual flood is 6437 cubic meters 

per second, and the standard deviation is 2951. Estimate the 100 and 1000-year flood of the 

river using Gumbel's method, and what is the 95 percent confidence interval for the predicted 

value? So, we have to first get the 𝑥t value and then the 95 percent confidence interval on the 

estimated 𝑥t value. These are the two components we have to do.  



 

So, let's start with the 100-year flood using Gumbel's method. This is the generalized equation 

we know, where the 𝑘k value is given by this relationship. Just now we discussed where 𝑦t is 

determined by this. It's a log-transform variate given by this relationship, 

−ln(𝑡/(𝑡−1))−ln(t/(t−1)), where it is just a function of 𝑡t. So, for 𝑡t equals to 100 years, 

𝑦100y100 can be calculated, and it comes out to be 4.6.  

 

Then, for sample size 92, that is, 𝑦̅ and 𝑆n values can be read from this table. Here, we have 

been given the values for 90 and 100. So, 𝑦̅ is 0.5586 and 0.560, which will lie between these 

because our sample size is 92. So, we have to interpolate and through interpolation, we get a 



value of 0.5589. Similarly, 𝑆n has to be between 1.207 and 2.065. We have to interpolate and 

here we get for 92 𝑆n equals to 1.2020.  

 

So, that means, now we know we can calculate 𝑘100 because we know 𝑦100, we know 𝑦̅, we 

know 𝑆n. So, putting the required values, we get 𝑘100 equals to 3.362. Putting in this 

generalized equation, all the knowns because we know 𝑦̅, we know 𝜎σ because these values 

can already be given. So, 𝑥100 comes out to be 16,358.3 cubic meters per second. So, that is the 

magnitude of the flood for a 100-year return period. The same procedure can be adopted for a 

1000-year flood, and for a 1000-year flood, 𝑦1000 comes out to be 6.907. Samples are 92, so 𝑦̅ 

and 𝑆n values will remain the same. So, 𝑘1000 comes out to be 5.2813, and then using the 

generalized equation we get 𝑘×1000 as 22,022.1 cubic meters per second. So, the first part is 

that using the Gumbel's distribution, we have obtained the flood magnitude for 100 years and 

1000 years return period. So, these two things we have done first.  



 

Now, we will go into the confidence interval, basically, and so, the 95 percent confidence 

interval for the 100-year flood in the Ganga River. We have to use this formula where 𝑓c has to 

be taken from this table. So, it comes out to be 1.96. So, 𝑓c is 1.96, probable error 𝑆c is 𝐵𝜎𝑛−1

, and already we have calculated the value of 𝑘k. So, putting the value of 𝑘k in here, we can 

calculate the value of 𝐵 equals to 4.22. 

 

And once 𝐵B is known, we can calculate the value of 𝑆𝑐Sc as 1298. These values are already 

given to us. So, it comes out with 18,902 and 13,813 cubic meters per second. So, for a 100-

year flood which the magnitude was 16,358, the upper and lower confidence limits are 18,902 

and 13,813. So, that means, this confidence limit says that though we have estimated a value 



of 16,358, but keeping the uncertainty, this value could lie anywhere between these two limits. 

Similarly, for a 1000-year flood, we will calculate the value of 𝐵, and then we will calculate 

the value of 𝑥1 and 𝑥2, and so, for 𝑥1, it is 25,767, and 𝑥2 is 18,272. So, the upper limit for a 

1000-year flood is 25,767 and 18,272. So, this is how we can once we know the 𝑥t value, we 

can also determine the confidence limits on the values.  

 

Now, we go into risk reliability and safety factor. Risk refers to the probability of occurrence 

of a specific event multiplied by the consequences or impact associated with that event. So, 

obviously, when we talk in terms of risk, that means, there is some chance of a mishap and we 

are ready to face the consequences in case of failure. That is the risk we are talking about. It is 

often expressed as the probability of a flood event exceeding a certain magnitude, combining 

the likelihood of occurrence with the potential consequences, providing a comprehensive 

measure of the overall flood risk in a particular area. So, obviously, you are fully aware of the 

consequences when you take a risk actually. The probability of occurrence of an event 𝑥≥𝑥t at 

least once over a period of unsuccessful years is called the risk. So, risk is given by 𝑅ˉRˉ, which 

is 1−1− the probability of non-occurrence of the event 𝑥≥𝑥t in 𝑛n years or 𝑅ˉRˉ is 1−(1−𝑃)𝑛, 

and it is in terms of the recurrence interval or return period 1−(1−𝑡)𝑛, where 𝑃 is the probability 

and 𝑡t is equal to 1/𝑡 or the recurrence interval. So, this is basically what we get.  



 

And if you talk about reliability, it's the measure of the dependability or trustworthiness of a 

system or structure in withstanding extreme events. So, how reliable the design is, that is what 

we are talking about. In the previous case, we thought about what risk we are going to take; in 

this case, how reliable our system is. So, just two different things we are talking about, often 

associated with the reliability of infrastructure or flood protection measures. Reliability 

estimates are crucial in the design and operation of hydraulic structures to ensure they meet 

specified safety standards, and reliability is basically defined as 1−𝑅̅, where 𝑅̅, as you know, is 

nothing but risk. So, risk is calculated, and then 1−risk is reliability. So, it is 1−1𝑡n. So, the 

appropriate design return period for a structure is contingent upon the level of risk deemed 

acceptable. So, how much risk you are going to take, of course, depends on the recurrence 

interval we are going to adopt for a particular design.  



 

Then we come to the safety factor, which is here. The safety factor is a numerical factor applied 

to the design safety capacity of a structure to provide a margin of safety against uncertain, 

unexpected conditions. Safety factors are used in engineering design to account for 

uncertainties in flood frequency estimates and other variables. So, what safety you are going 

to provide in your design, that is the safety factor. The parameter 𝑚m is applied to the 

development project, and the safety factor for parameter 𝑚m, 𝑆𝑓m, is the ratio of the actual 

value of the parameter adopted in the design to the value of parameter 𝑚m obtained from 

hydrologic considerations, so 𝐶𝑎𝑚 by 𝐶ℎ𝑚. So, basically, this parameter value we are 

obtaining after analysing the data, but over and above that, we want to provide some kind of 

safety. So, that is why we adopt a higher value of 𝐶𝑎𝑚, and that is how this safety factor is 

there. Parameter 𝑚m includes items such as flood discharge magnitude, maximum river stage, 

reservoir capacity, and freeboard. So, anything can be used as a parameter, and the safety 

margin is the difference between 𝐶𝑎𝑚 and 𝐶ℎ𝑚. So, this is the actual value, and this is the 

adopted value. So, the difference between the two is referred to as a safety margin.  



 

Let's take an example here: a bridge is designed with a projected lifespan of 25 years for a flood 

magnitude with a return period of 100 years. What is the hydrological design risk? What is the 

reliability of the structure? If a 10 percent risk is deemed acceptable, what return period should 

be chosen? That is what we are talking about. So, we have three different bits. The risk, as we 

already know, 𝑟ˉrˉ is 1−𝑡n. Here, 𝑛n is because the projected lifespan is 25 years, so we are 

talking about 𝑛=25 years, and the return period considered is 100 years, so 𝑡=100 years. Putting 

values of 𝑡t and 𝑛n here, we get 𝑟ˉ=0.222, which simply means that the inbuilt risk in this 

design is 22.2 percent. So, when we are designing this structure for 25 years with a 100-year 

return period, then we have an inbuilt risk of 22.2 percent that we are willing to take; that is 

what this means. Now, coming to bit B, reliability, and we already know the reliability is 

nothing but 1−𝑟ˉ. So, that means 1−0.222 or 0.7780.778, which simply means the reliability of 

the design is 77.8 percent. So, our design, if we use this design, is 78 percent reliable.  



 

And then, if 𝑟ˉ is 10 percent or 0.1, the appropriate return period can be found using this 

relationship, and from here, we get 𝑡=238. So, that simply means, earlier we saw that when we 

were using a return period of 100 years, our risk was 22 percent. So, if you want to take a risk 

of only 10 percent, then you have to choose a return period of 240 years for designing a 

structure. And that is why, as we discussed earlier, when we talked about large structures, we 

take 𝑡=1000 years, I mean, the lifespan may be 100 years, but we take a return period of 1000 

years because we do not want to take that higher risk, and we want to minimize the risk in that 

particular design. So, for a 10 percent capital risk, the bridge will have to be designed for a 

flood having a return period of 240 years. So, with this, if you take 𝑟ˉ=1 percent, then obviously, 

you can guess what will be the return period, which will be much, much higher. 

 



Let's take another example: the Damodar River's annual flood data from 1980 to 2018 reveals 

an average annual discharge of 9750 cubic meters and a standard deviation of 4280 cubic 

meters per second. In planning a bridge over this river, a 10 percent acceptable risk over its 50-

year expected lifespan is chosen. Utilizing Gumbel's method, estimate the flood discharge for 

the design with an adopted actual flood value of 41000 cubic meters per second. In the design, 

determine the safety factor and safety margin concerning the maximum flood discharge. So, 

obviously, in this case, the risk value is 0.1; all other data is given, and we have to first find out 

the flood discharge. Then, of course, because we have already designed with a certain value, 

we need to calculate the safety margin. So, obviously, the first thing we have to do is calculate 

the value of 𝑇e, the return period, which comes out to be 475. So, for this 10 percent risk, the 

lifespan, or rather the return period, has to be 475 years. So, obviously, we need to estimate the 

flood magnitude for a return period of 475 years using Gumbel's method.  

 

And for Gumbel's method, we know that we need 𝑦̅ and 𝑆n, and our 𝑛n value is 39 years. So, 

from here, with 39 years, we have to interpolate the values. Thus, we obtain 𝑦̅ bar as 0.543 and 

𝑆n as 1.1388. The 𝑦t value, which we need to calculate the variate in terms of 𝑇e, which is 475, 

comes out to be 6.163. From this equation, we can calculate the frequency factor as 4.9344. 

Given 𝑥̅ as 9750 and standard deviation as 4280, the flood magnitude for a 475-year return 

period using Gumbel's method comes out to be 30,869 cubic meters per second. Therefore, for 

a 10 percent risk with the given data, our flood magnitude is 30,869 cubic meters per second. 

Thus, the design flood is this value. 



 

Now, regarding bit B, the safety factor and safety margin: the adopted flood magnitude is 

41,000 cubic meters per second, whereas the calculated hydraulic design is 30,869. Therefore, 

the safety factor is the adopted flood magnitude divided by the hydrological design flood, 

which results in 41,000 divided by 30,869. Thus, the safety factor comes out to be 1.33, and 

the safety margin is the difference between the two, that is, the adopted flood magnitude and 

the hydrologic design flood. Consequently, that comes to be 10,131 cubic meters per second. 

Hence, we have adopted a safety factor of 1.33 and a safety margin of around 10,000 cubic 

meters per second in the design. So, the safety factor and safety margin in the design are 1.33 

and 10,131 cubic meters per second, respectively.  

 



With this, we come to the end of this lecture. We have carried out flood frequency analysis 

using the log Pearson type 3 method. We have also seen how to calculate the risk, reliability, 

and safety factor or safety margin in a particular design. Please give your feedback and feel 

free to raise any questions or doubts. We shall be happy to answer them on the forum.  

Thank you very much. 

 

 


