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Hello friends, welcome back to this online certification course on Watershed Hydrology. I am
Dr. Rajendra Singh, a professor in the Department of Agriculture and Food Engineering at the
Indian Institute of Technology, Kharagpur and we are in Module 1. This is Lecture Number 3
and the topic is Rainfall Data Analysis Part 1. In this lecture, we will talk about the presentation
of rainfall data, the consistency of rainfall records and the estimation of mean rainfall.
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Now, coming to the presentation of rainfall data, if you remember from the previous lecture,
we discussed the measurement of rainfall. We mentioned that the typical instrument used is
called a rain gauge which comes in two types: recording and non-recording. The non-recording
type includes Simon's rain gauge while the recording type includes float or siphon types as well
as weighing bucket or tipping bucket rain gauges. These rain gauges along with radar and
satellites are used for measuring rainfall. Once rainfall data is measured typically by institutions
such as the India Meteorological Department the data must be preserved and presented in a
certain form.
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Now, one of the most common ways of preserving or presenting rainfall data is in the form of
a mass curve which is basically a plot of accumulated rainfall against time. Here, you can see
this mass curve representing rainfall. As you can observe accumulated precipitation in
millimeters is plotted against time in hours. This curve essentially indicates cumulative rainfall
signifying instances of rainfall events. For instance, the initial spike indicates the first storm
which had a rainfall of 16 mm. Subsequently, the flat horizontal line denotes a period with no
rainfall occurrence between 20 and 40 hours. Following this dry spell a second rainfall event
is depicted resulting in approximately 32 mm of rainfall. Then, once again the curve remains
flat indicating no further rainfall. This method allows us to record data either on a daily or
weekly basis. Interestingly, it's noteworthy that both the weighing bucket and siphon type rain
gauges automatically generate mass curves. This automated process makes them commonly
used for preserving rainfall data.
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Another method of preserving rainfall data is through hyetographs which are essentially bar
charts representing rainfall intensity over time. In this representation rainfall intensities are
plotted against time in hours depicted as bars on the chart. Consequently, we need to consider
time intervals or slices. In this case 8-hour slices are utilized: 0 to 8 hours, 8 to 16 hours and so
forth. Calculating the area under each bar reveals the amount of rainfall within that specific
time slice providing a comprehensive view of rainfall distribution. Summing these areas over
the entire period yields the total rainfall depth. For instance, over a 48-hour period the total
rainfall amounts to 10.6 millimeters.

Hyetographs are typically derived from mass curves which might seem complex at first glance.
However, they play a crucial role in various applications including the analysis of infiltration
rates. In future lectures, we will delve into the significance of hyetographs and their application
alongside discussions on average infiltration rates. Another method of preserving rainfall data
is through depth area duration curves which we will explore further in subsequent discussions.
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So, basically as you can see here the depth of rainfall versus the average rainfall depth is plotted
for different durations of rainfall. These 2-hour storms, 3-hour storms simply indicate the
duration of the storm. The aerial distribution characteristics of a storm of a given duration are
reflected in its depth-area relationship. As you can see the depth area and storm duration are all
shown here. Typically, when we discuss the depth-area relationship for a given duration of
rainfall, the average depth decreases with the area in an exponential fashion as given by this
formula where p represents the average depth of rainfall over the area, p,, is the highest amount
of rainfall at the storm centre and k, 4 and r are constants with a representing the area. Now, as
you can see the average depth decreases with the area exponentially which we can also observe
here. The average depth decreases as the area increases showing an exponential decrease.

Following this relationship the average rainfall depth decreases exponentially with the area for
rainfall of different durations. So, as you can see here for different durations of course when
the duration of the rainfall is longer, the magnitude of total rainfall will be higher. However, in
terms of depth versus area. It decreases exponentially. This is how the depth-area duration curve
preserves the data.
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Then, we come to the consistency of rainfall records. Basically, the consistency of rainfall
records is analysed using a double mass curve. The consistency in a station's record is checked
by plotting the double mass curve. So, whenever we take the data of a particular station and as
part of quality analysis, we want to determine whether the data of the station are consistent or
not over a period of time over the period of the record. We can do this analysis by plotting the
double mass curve. Here, the cumulative annual rainfall of the station is plotted against the
average annual rainfall of neighbouring stations in reverse chronological order.

So, as we've observed in a catchment, we can have several rain gauges installed. Typically, we
design the gauge network accordingly. Suppose, for example we have a station here and we
want to analyse the data from this particular station. Let's call it X. Obviously, to carry out a
consistent analysis, we collect data from all neighbouring stations.

To plot the double mass curve, we plot the cumulative annual rainfall of station X against the
average annual rainfall of neighbouring stations. Therefore, we collect data from neighbouring
stations to determine their average annual rainfall and then plot the cumulative average annual
rainfall of these neighbouring stations against the cumulative annual rainfall of station X. This
can be observed in the plot displayed.
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If the data are consistent, it is expected that they will follow a straight-line relationship akin to
a 45-degree line. However, a change in slope of the line indicates inconsistency. If the slope of
the line changes, it suggests that the data are not consistent.

Examining the figure it's apparent that the station data is inconsistent. There's a noticeable
change in the slope of the line specifically in 1995. This indicates the year in which the
inconsistency occurred. Therefore data prior to 1995 and post-1995 follow different trends or
patterns.

Today, we're going to discuss why we plot data in reverse chronological order. Essentially, the
reason behind this approach is quite significant. We opt for reverse chronological order wherein
the latest data is plotted first and the oldest data comes last simply because it's anticipated that
we will continue to utilize the same instruments, locations and observe consistent data trends
in the future.

In a double-mask curve when we correct data, our objective is to align inconsistent data with
the current trend. Therefore, we plot the data in reverse chronological order and then analyse
whether the data points are consistent or not. Inconsistencies in rainfall records can stem from
various factors such as changes in instruments alterations in the rain gauge's location or shifts
in the surrounding environment.

For instance, let's consider a specific station where the rain gauge was initially functioning on
one wall but later the instrument itself was replaced. Consequently, the recording pattern might
have been altered due to the change in instruments. Similarly, in certain regions a slight
relocation of the rain gauge can occur. This relocation can result in changes in the recorded
rainfall patterns due to the shift in the gauge's location and its surrounding environment.
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Moreover, changes in the surrounding environment can also contribute to inconsistencies. For
example, if a location with a rain gauge suddenly sees the construction of a tall building nearby
or the growth of a new tree, it can affect the rainfall trend observed at that particular location.
So, understanding these factors is crucial when analysing rainfall data as it helps us discern and
account for any inconsistencies that may arise over time.

So, due to changes in surrounding conditions, the data may become inconsistent. Essentially to
correct the data we analyse the slope of the line OA which represents x divided by y. Similarly,
we examine the slope of line AC which is A divided by B. Then we determine the correction
factor SOA divided by SOV using the slopes of the two lines. This correction factor is crucial
for adjusting the data. Rainfall data prior to 1995 needs to be multiplied by this correction
factor. I believe clarity will emerge once we delve into an example. Let's consider one now.

We'll analyse the annual rainfall at station M and the average rainfall at neighbouring stations
near M as presented in Table 1. We'll employ the double mass curve to assess the consistency
of rainfall data at station M and calculate the corrected rainfall if inconsistencies exist.

Here's the table displaying rainfall data at station M (in millimeters) and the average rainfall at
various neighbouring stations near M (also in millimeters). The data spans from 1993 to 2023.
Notably, the data is already arranged in reverse chronological order as required for the double
mass curve analysis. If the data were not in this order, we would have to rearrange it
accordingly.
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Now, as we observed in the double mass curve, we need to plot the cumulative annual rainfall
of the station against the cumulative rainfall of neighbouring stations. So, the first thing we
have to do is to obtain the cumulative rainfall at station M. It is essentially the cumulative data
of this column. The first value of course remains 612. The second value is the sum of these two
values, which is 612 plus 426 resulting in 1038 and so forth. Similarly, the P sum P average
millimeters which is the cumulative average rainfall of neighbouring stations is derived from
summing up the cumulative values of this average rainfall value.

The first value here is 588. The second value will be the sum of these two which is 998. The
third value of course will again be a let 787 to 817, 85 and so on. Thus, cumulative values are
calculated and then of course we plot the graph between the cumulative annual rainfall of
station M and the cumulative mean rainfall value of neighbouring stations in reverse
chronological order. This is how we generate the graph. Therefore, if we plot the graph between
the cumulative annual rainfall of station M and the neighbouring station's mean rainfall then
this is the graph we obtain referred to as the double mass curve.
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Now, we have to analyse whether the data are consistent or not. If the data are consistent, then
all the data will follow the 45-degree line indicating no change in the slope of the line anywhere.
However, as you can see here, there is a point where the slope of the line changes. This implies
that between O and A and A and C, the slope of the line is not the same; it changes.

So, from the year 2000 to 2011, specifically in 2011, there was a significant change observed
in the slope of the line, indicating inconsistency in station data. Consequently, any data
collected prior to 2011 needs correction. To achieve this correction, we must determine a
correction factor which we've already identified as the ratio of the slopes of two lines.

To calculate this, we've employed a method using Excel to fit straight lines resulting in the
equations displayed here. For the segment OA, the equation yields a slope of 1.0171. Similarly,
for the segment AC, the slope is 0.8774. Therefore, the slope of line SAC is 0.8774. The
correction factor is then the ratio of these slopes resulting in 1.16.

Hence, all data preceding 2011 must be multiplied by this correction factor to align with the
current recording trend at this station. This instruction is indicated by 'rainfall data prior to 2000
has to be multiplied by the correction factor.
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It's worth noting that while the figures I've presented illustrate a typical case. There are
instances where the line might deviate. In such cases, we still need to calculate the slope and
correction factor to adjust the data to align with line AB.

So, this may not always be the case; it won't always fall below the 45-degree line. Therefore,
for the final values if you observe the PM, it means that for the station prior to 2011, we will
need to obtain fresh values. Prior to 2011, the data is multiplied by a factor of 1.16. In this table
the PM value in 2010 is 998.

This is the 9th, so it needs to be multiplied resulting in 1158.84. In fact, all data prior to 1993
needs to be multiplied by 1.16 in order to obtain corrected data. This is the consistent data we
will be using for further analysis.

Now, let's discuss the estimation of mean rainfall which is essentially the rainfall measured by
rain gauges in a catchment. We have multiple rain gauges and the recorded rainfall at these
stations is referred to as point rainfall. So, the data we obtain from a specific station is known
as point rainfall. However, to derive a representative value for the entire catchment, we need
to convert the point rainfall from various stations into an average over the basin.
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The commonly used methods for this purpose include the arithmetic average method, Thiessen
polygon method, isohyetal method and two-axis method. Let's delve into each of these methods
one by one.

Estimation of Mean Areal Rainfall
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Let's start with the arithmetic average method. As the name suggests, it's the simplest method
where we calculate the arithmetic average of all the recorded points. However, there's a
condition: this method is applicable when the area is hydrologically homogeneous and the rain
gauges are uniformly distributed over the catchment.

The first condition is that the hydrological behaviour of the catchment should be uniform
throughout. So, there are ways to determine whether the area is hydrologically homogeneous.
Another condition is that rainfall should be uniformly distributed over the catchment to



represent the data from all parts of the catchment. If these conditions are met, then simply
taking the arithmetic average of the values recorded at various stations gives the mean rainfall
of the basin.

The mean rainfall (7) is calculated as the sum of all the station values divided by the number
of rain gauge stations. In essence, in the arithmetic average method each station is given equal
weight which is n where 7 is the number of stations. So, in this method each station contributes
equally to the final average.

Kstimation of Mean Areal Rainfall

Arithmetic Average Method
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Solution:
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The mean areal rainfall of the area is 1180 mm.

Let's illustrate this with an example: In a year, the annual rainfall at different stations in an area
is given below. We need to determine the mean annual rainfall of the area.

So, there are 4 stations: 1y, 15,13 and 7, and the recorded rainfalls in the year are 800, 2009,
1806 and 1103 respectively. Obviously, we presume or assume that the area is hydrologically
homogeneous and the rain gauges are uniformly distributed. In that case, we can simply take
an arithmetic average of the values. So, the sum of the values divided by the number of rain
gauge stations will give us the average value which is 1180 millimeters. Thus, the mean annual
rainfall using the arithmetic average method comes out to be 1180 mm.
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Now, the next method is the Thiessen polygon method which is one of the most popular
methods for estimating the mean aerial rainfall. In fact, most computer software also uses this
method. Here, polygons defining the area represented by various rain gauge stations are created
by drawing perpendicular bisectors to the lines joining the rain gauge stations. We will see the
detailed procedure in the next slide.

Then, the mean annual rainfall is estimated using the following equation:
Ti=an

Where 7; is the rainfall at station q; is the area represented by station i and # is the number of
rain gauge stations. In this case, a; divided by the sum of all a;'s gives the weighing factor for
the particular station.

Today, we'll delve into how weights are assigned based on the area of the polygon represented
within a particular catchment. First, let's outline the procedure. We start by drawing the
catchment area to scale and marking the rain gauge stations on it. Here, we have six rain gauge
stations labelled from 'a' to 'f'. It's worth noting that some stations may lie outside the catchment
boundary.

Next, we connect each station with straight lines forming a triangular network. This network is
depicted by solid lines on the diagram.

Moving forward, we draw perpendicular bisectors within each triangle represented by blue
dashed lines. These bisectors are extended to intersect with each other and with the catchment
boundary. This process is repeated for each triangle within the network.

The resulting bisectors enclose polygons around each station, defining the area represented by
that station. For instance, the polygon around station 'a' represents its area within the catchment.



To calculate the area of each polygon one can use a planimeter or convert the area into a smaller
unit. Alternatively, the entire network can be plotted on a graph sheet to obtain representative
values.

For stations located near the catchment boundary, the boundary lines serve as the closing limit
of the polygon. This aspect is crucial, as demonstrated by station 'e' which lies outside the
catchment boundary.

Estimation of Mean Areal Rainfall
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In summary, this method allows us to assign weights based on the area represented by each
station within the catchment, facilitating accurate analysis and prediction of rainfall patterns.

That means the weights are assigned based on the area of the polygon represented within the
particular catchment. Now, coming to the procedure, what we do is draw the catchment area to
scale and mark the rain gauge stations on it. So, you can see here we have 6 rain gauge stations
from 'a' to 'f' and some stations may be marked outside the catchment boundary. Now, what we
do is join each station by a straight line (shown here as a solid line) to create a triangular
network. So, as you can see, a triangular network is created.

Next, what we do is draw perpendicular bisectors (shown here in blue dashed lines) on each
triangle and extend the bisectors to meet other bisectors and the catchment boundary. So, we
draw these perpendicular bisectors like this and also extend them so that they intersect each
other and the catchment boundary, here and here and so on. That is the procedure followed in
each case. Now, these bisectors form a polygon around each station. So, as you can see for
station 'a' here this is the polygon.

So, that is the area being represented by Station A. These bisectors form polygons around each
station. The area of each polygon gives the area represented by the station and it may be
calculated using a planimeter or by converting the area into small units. Alternatively, you can
use a graph sheet to plot this entire thing and obtain the representative value. For stations close
to the catchment boundary, the boundary lines form the closing limit of the polygon. This is



important because, for Station E in this case, although it is outside the catchment boundary, it
still holds significance.

So, basically, this is the area. The catchment boundary forms the limit for this area. The area
within the polygon, but bounded by the catchment boundary on one side represents Station E.
Let's take an example to estimate the average precipitation using the Thiessen polygon method.
These are the stations with recorded rainfall. As discussed, we will create the Thiessen polygon
network, extend it, find the representative area of different stations, and then determine the
catchment area.

Estimation of Mean Areal Rainfall
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So, for example, let's consider station A, where the area represented by the station is 72 square
kilometers. Then, of course we multiply the area by the catchment rainfall to get the total
rainfall for that area. To calculate the average precipitation, we know that it's the summation of

Estimation of Mean Areal Rainfall
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the product of area and rainfall divided by the total area. So, when we sum these values, we get
2572.6 and when we sum the areas, we get a value of 344 square kilometers.

Thus, the average precipitation comes out to be 7.47 millimeters using this method. Now, let's
move on to the last method which is the isohyetal method - the third method. in fact, isohyets
are the lines joining points of equal rainfall magnitudes and they are drawn by interpolating
point rainfall data. So, essentially isohyets represent areas of consistent rainfall magnitude.

The mean annual rainfall is estimated using the following equation: the area included between
two isohyets is determined and the average of the two stations within that area is taken into
account. The sum of these values divided by the total area provides us with the average rainfall.
This method is particularly useful in hilly terrains.

Lstimation of Mean Areal Rainfall

Isohytel Method
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Let's consider an example here. The first step is to draw the catchment area to scale and mark
the rain gauge stations on it. This is precisely what we have done here; we've marked the
catchment area and the rain gauge stations, indicating the recorded rainfall values. Record the
rainfall values at each station for the period of interest. In this case, we are dealing with daily
rainfall data. Next, draw the isohyets of various values by utilizing the point rainfall data and
interpolation.

For instance, to draw the 3 mm isohyet we require surrounding data points. If, for example, we
aim to depict 4 mm we already have the recorded value. However, to establish where 4 mm
lies between 3 and 5 we employ interpolation. Similarly, we interpolate to determine the
position of 4 mm between 3 and 5.5 and between 3 and 6. By utilizing data points such as 3
and 6.5, we can accurately interpolate the location of 4 mm. Through this interpolation process,
we obtain sufficient points to delineate the isohyet of a known value.
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So, that is what we have done here. Similarly, we will draw 5, 6, 7, 8 and so on. That is how,
for the given area, we will draw the isohyetes of different values. Then, we determine the area
between each pair of isohyetes. That means between 6 and 7 for example we will find out the
area between 6 and 7 and so on. This can be done either by planimeter by converting the areas
into smaller geometrical shapes or even by using a large-sized graph sheet.

Now, let's take an example or problem on the isohyetal method. We will use the isohyetal
method to determine the average precipitation depth within the basin for the given storm for
which the isohyetes are already provided. The isohyet interval is also given. The average
rainfall values between the isohyetes such as between 10 and 20, 15, 20 and 30 will be 25 and
so on. Then, we have to find out the catchment area. For example, for A, which lies between
20 and 30, we need to find the area within the basin.

A4, A, and so on, will measure this area. Then, we multiply the area by the average rainfall to
obtain the sum of the values. The sum of these values is 16,800 and the total area of the
catchment is provided. Dividing the sum by the total area, we get the average aerial rainfall of
the basin which comes out to be 15,800 mm.



With this, we close today's lecture. Thank you very much for listening, and please feel free to
give your feedback and raise questions on the forum so that we can address them. Thank you
very much.



