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Welcome friends to this eighth lecture of this NPTEL online certification course and we are in 

week 2, where we are discussing the basics of Multivariate Data Analytics. And in this week, we 

have already discussed the correlation, we have seen the basic structure of the (())(0:36) 

spreadsheet, we have seen the what is the multivariate data and different types of association. 

We have seen the correlation, features of different correlation, positive correlation, negative 

correlation, no correlation and how those plots look like, correlation features. And also we have 

seen the simple linear regression, in case of simple linear regression, we have seen the 

assumption of simple linear regression, four important assumption of simple linear regression if 

you remember, constancy of variance, independence of the observation, then normality of the 

observation and linearity of the mean. So, you can see that these are the four major assumption 

of linear regression. 

And then we have seen the slope as well as the intercept for this simple linear regression of y 

versus x. And then we have seen how to calculate, how to visually represent the different sum 

squares part of the total regression scenario, how we can calculate the R square from the sum 

square error, sum square total and sum square regression. What is RMSE, how we can identify, 

how we can see and interpret the output of, the output of the slope and intercept. So, we have 

seen all these. 
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Now, in this lecture we are going to discuss these following concepts. First of all we are going to 

discuss the confidence interval and prediction interval and what are the differences between 

confidence interval and prediction interval. We are going to also discuss the diagnostic plots of 

residuals to identify whether all the assumptions of linear regressions are met or not. And then 

we are going to see if time permits then we are going to see that data transformation Box-Cox 

transformation, centering and scaling and multiple linear regression.  
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So, we will try to cover these keywords in this lecture. First of all, we will see the centering 

scaling, then a Box-Cox transformation, multivariate calibration, multivariate classification and 

multiple linear regression.  
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So, let us start with the means and prediction. So, you can see that in case of simple linear 

regression, if this is a simple linear regression plot, two questions always arise, first of all for 

guessing the values of Y always there are two questions. First of all, what is the mean of the 

distribution of Y for a given value of X?  

Suppose this given value of X is x0, what should be the mean of the distribution of Y in that 

case? Or in other words, what is the mu hat Y slash X given the value of X equal to x0. Now, 

what we, and second question is what will Y be for a new case where X equal to x0 is the level 

of the explanatory variable. And what is the, or in other words what is the predicted, prediction 

of Y, given the value of X is the x0.  

So, our predicted estimated or predicted value will be same, but the interval for these two, is 

these two questions will be different. So, each quantity for each quantity will be different. So, the 

first interval where we are interested for the mean of the distribution of Y, then we will call it a 

confidence interval for a mean and when we are more interested to know the Y for a new case 

where X equal to x0, we will call it a prediction interval for a new observation. So, this is how 

these two are different from each other.  



So you can see in this figure, this is Y versus X. And you can see these are the observation this 

blue line is showing the 90 percent confidence interval of mean. So, that shows that within this 

line the Y, the mean of the Y values will reside. And whereas, these dotted lines, these orange 

dotted line shows the two extremes of the prediction interval and it shows that Y will be given a 

value of X, the predicted value of Y will line here. So, one encompasses the mean of Y whereas, 

the other encompasses the prediction of Y. So, this is how they are different from each other.  

(Refer Slide Time: 5:41)  

 
So, if we how to calculate the confidence interval of mean so, if the estimated mean this is for 

given X equal to x0, we know that, we have already seen that now, the standard error for these 

estimates you can calculate by using this formula where this sigma hat root over of 1 by n plus 

x0 minus X bar whole square by n minus 1 SX square, where SX is the standard deviation of X.  

So, for a given level of alpha, the confidence interval will be, this is the mean value which we 

know and which is equal, which is same for both calculating the confidence interval and 

prediction interval plus minus t alpha by 2 n minus 2 degree of freedom and then standard error 

of these which you have already expressed here.  

So, if we calculate these that will give you that blue dotted line which we have seen in our 

previous slide, this blue dotted line which we have seen in our previous slide. So, this is the 

confidence interval of mean. Now, the standard error of these term depends on the value of x0, 

the number of samples are also the sigma hat or estimate of the standard deviation.  
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So, if we see the forbes data example, if we consider the forbes data example, the log of pressure 

versus boiling point and this is the scatter plot. Consider the following two cases, estimate the 

mean of log pressure when the boiling point is at 200 degree Fahrenheit and provide a 95 percent 

confidence estimate. So, in this case, since our data set encompasses these value, that means, it 

starts from somewhat around 190 and it goes up to 200, around 250 or something like that. So, 

for 200 which comes in between this range, this will be an example of interpolation.  

However, if we want to estimate the mean lock pressure when the boiling point is at 220 degrees 

centigrade and provide a 95 percent confidence interval, that would create the problem, because 

in that case, there will be extrapolation. Now, why it is extrapolation? Because, this 220 does not 

come under this our data set data range. So, these 220 is somewhere here and that is why it will 

show the extrapolation.  
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Now, estimating the, so, what is the difference between interpolation and extrapolation you 

know. So, estimating the mean of Y given X equal to x0 is in the range of the data is called the 

interpolation, which we have seen, this is always safe to do, because you have already developed 

the model based on the data range, your calibration model has been developed based on the data 

range or estimating the mean of Y given X equal to x0 when x0 outside the range of the data is 

called the extrapolation.  

Remember, extrapolation in case of linear model is a very, very dangerous issue. So, you should 

be very very careful, while extrapolating your value and you should interpret it very very 

cautiously. So, design your experiment so, that you always have data near to where you want to 

predict the mean. So, you should not extrapolate when you go for modeling any data or making a 

regression equation of Y versus X.  
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Now, we know that what is, we know that the confidence interval for the mean that we have 

produced so far are valued only at one value X equal to X0, but in the language of ANOVA think 

individual error rate, if we consider the individual error rate. So, what about, so what about for 

familywise error rate? Here we are considering X equal to X0 but what about the familywise 

error rate? 

So, there are two approaches through which we can address this familywise error rate. First 

approach is known as the Bonferroni approach, where we want to produce a simultaneous 

confidence band for the mean of Y valid at K different X values. So, there are certain definite 

number of X values which are X1 up to XK. So, this is how you calculate based on the 

Bonferroni approach. 

However, there is another approach that is called Scheffe approach. So, Scheffe approach is 

aimed to produce a simultaneous prediction, simultaneous confidence banned for all values in the 

mean of Y. So, it considers all values of the mean of Y, so valid at all the observed X values. So, 

this is the difference between the two approaches, but at the, you should remember that when 

you design your model you should avoid the extrapolation because that may create some 

problem.  
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So, now, we have seen the how to calculate the confidence interval. Now, how to calculate the 

prediction interval or PI. So, the predicted value of Y for a new case X equal to x0 is basically 

you can calculate by beta 0 plus beta 1 hat x0. So, these value is the same as the predicted mean 

of a Y that is X equal to x0. So, these terms is same for both confidence interval and prediction 

interval.  

However, the only the difference is the in case of calculating the confidence interval we 

calculated the standard error, but here for calculating the prediction interval, we are going to 

calculate the prediction error. So, the prediction error is not equal to the standard error. In case of 

confidence interval of mean we can calculate the standard error, but in case a prediction interval 

calculation we have to calculate the prediction error.  

So, prediction error is associated, prediction error we can calculate by using this formula where 

the sigma hat equal to 1 plus 1 plus a 1 by n plus x0 minus x whole square by n minus 1 SX 

square. So, basically the sigma hat square plus standard error of this term. So, if we want to 

develop a prediction interval for a given value of alpha, we can have these, we can have this is 

basically for a value of X equal to x0 this is basically the summation of this term.  

Now, remember these term is equal in both the confidence interval as well as prediction interval. 

However, the second term is different in case of, this is the second term which is different in case 

of prediction interval calculation.  
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So, let us move to the, so, we have now seen the difference just. So, we have seen the difference 

between confidence interval and prediction interval and let us see the model assumption and the 

potential violation of the model assumption. So, we know that there are assumptions that is Y is 

a simple linear relationship with X and then the error term is normally distributed with a constant 

variance. And then, two error terms for two observations are pairwise independent for all i not 

equal to j. 

That means if these are two different observations, there are terms of those two different 

observations are independent to each other. In other words, the observations are independent to 

each other. So, what are the potential violations in these observe, in this, in these assumptions. 

First of all, you will see that Y is not linear to X that is the one potential violation. Second is 

non-constancy of error variance. 

Now, constancy of error variance is also known as homoscedasticity. However, when there is a 

non-constancy of error variance that is called heteroscedasticity. So, heteroscedasticity violates 

the assumption of simple linear regression. And third is the non-independence of error terms is 

also another important violation. And finally, outlier observations are also potential violation.  
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So, diagnostic plot of residuals you will see that the residuals when the residuals that is Ei are 

against the predict, if you plot against the, if you plot the residuals against the predicted 

variables, you see, you should check the linearity and constancy of variant, you can also plot the 

residuals against the fitted values that is Y hat and then check the linearity and constancy of 

variants. 

Third, you want to plot the residuals against the time or other sequence then check the 

independency of the residuals. Then, you can do some box plots of the residuals and check 

normality and skewness of the residuals and then you can do some normal probability plot of 

residuals and check normality and skewness of the skewness of residuals. So, these are the some 

diagnostic plots you can check for seeing whether the assumptions has been maintained or they 

have been violated. We will see some example.  
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So, here you can see there are some prototype residual plot, here you can see if you are plotting 

the residual against the X, we will see that non-linearity of the distribution of the residuals. So, 

this is not okay, and this is here also you can see this is not constant error variance, there are 

these, in this way there are tapering, so, this is called heteroscedasticity. So, this 

heteroscedasticity is also not good.  

Here also you can see some trends, but here you can see the residuals versus time they are 

distributed evenly along the 0 line and that shows the accepted feature or accepted residual 

diagnostic plot. So, all the three cases we do not see any, they are violating our assumption, but 

here they are maintaining our or they are supporting the assumption where we are plotting the 

residual against the time, we can see both linearity as well as the constancy of the variance as 

well as we do not see any type of nonlinear trend. So, this is how you see the prototype residual 

plots. 
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And now let us see some normal probability plots. Normal probability plots of the residual if you 

see the normal probability plot of the residuals if your residuals are right skewed, then you will 

see this kind of distribution, if they are left skewed, you will see this type of distribution. If they 

have heavy tails, you will see this type of normal probability plots, but the if they are normally 

distributed, you will see this type of observer, use this type of normal probability plot. So, these 

shows maintaining the assumption of linear regression. However, in this three condition, they are 

not maintaining the assumption of linear regression. 
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For Forbes example, you can see some residual plot here, predicted value versus residual, here 

you can see, also it is residual plot Xi versus Ei for each values of the independent variable you 

can see how these residual plots are varying.  
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And then you can also see the prediction interval and prediction interval and, so, this is the lower 

limit, this green line shows the lower limit of the prediction interval and this blue line is showing 

the upper limit of the prediction interval and this is basically 95 percent prediction interval and 

this red line is showing the mean line for prediction. 
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Now, we have discussed the prediction interval and calibration and confidence interval. Now, we 

need to know what is multivariate calibration. So, we know now, what is simple linear regression 

and what are the features of simple linear regression, how to teach the assumption of simple 

linear equation. Now, we want to discuss, we can, we start discuss the multivariate calibration.  

Now, multivariate calibration are used to develop mathematical models that allow us to predict a 

continuous Y from variable X values. So, the simple linear regression and multiple linear 

regression the only difference is in case of multi linear regression, there are more than 1x 

variable. 

However, so, multivariate calibration depends on predicting a continuous value or continuous 

variable Y using the variable X1 to Xm. So, predicting soil organic carbon for example, 

predicting soil organic carbon by near infrared spectra or predicting cation extent capacity of the 

soil by using the portable XRF instrument reported elements. So, these are some examples of 

multivariate calibration. And in our coming weeks, we are going to discuss them in details with 

examples. 
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Also multivariate classifications are there. When our target are several classes instead of 

continuous variable, then we can say it is a multivariate classification. Now, in case of, here you 

can see an example of classification and regression tree which is an important data mining or 

machine learning approach, where we try to classify, where we are trying to classify different 



types of soil using the different elements, elemental values like, here you can see we are using 

zinc, potassium, zirconium, led, manganese, copper and we are developing some rules, nonlinear 

rules to classify the soil samples into three groups, forest soil sample, converted soil samples and 

soil samples, which are coming from the agricultural fields.  

So, these three are our final target clusters, and we want to classify the cell sample based on 

these input parameters, which are the different elemental content. So, this is an example of 

multivariate classification because, here more than one feature we are using and then we are 

using them to classify our target value. So, this is an example of multivariate classification.  
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Now, let us see some basic data processing thing, which are generally basic data processing 

approaches which are required for handling the big data. So, generally when there is a Skewness 

in the data, I have already showed you when the residuals are highly skewed, that creates 

problem. So, when your data is skewed the in that case the standard deviation generally 

increased.  

And so, in that case, we require data transformation for maintaining the better symmetry and 

further, and for standardization you cannot do the standardization of all the variables in a single 

time simultaneously. You have to do the standard deviation, you can, you have to do the 

standardization of each of the variable at a time and you can see, you have to see which one of 



them are performing best. So, you have to try a couple of standardization technique and then you 

had to select the one which is giving the best result.  

If there is a right skewed data you go with the log transformation and sometime there are some 

power transformation, log transformation is also power transformation. So, power transformation 

is denoted by Y power lamda, the power transformation is denoted by Y to the power lambda 

and the Box-Cox transformation is another important transformation which we are going to 

discuss. And Box-Cox transformation is also widely used in different data processing 

approaches.  
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Now, transformation, now transformation is a common tool to deal with nonlinearity, because 

and also non normality and unequal variance problem in linear regression analysis. So, here you 

can see that, here the data is kind of not very, this is an X versus Y plot, scatter plot and we can 

see that in this case, we cannot see very prominent linear relationship. However, when you take 

the log values of this Y, we can take that this linear relationship is more prominent. So, you can 

see we are making a transformation of the data here.  

Similarly, also here you can see this is Y versus X is another data set and we can see some kind 

of nonlinear trend. However, when we are taking the Y cube value, then we can see there are 

linearly distributed. So, linear, there is a linear relationship between Y cube and X. So, this is 

also a data transformation.  



So, you can see this is a power transformation, this is a log transformation and this type of 

transformations are helpful for dealing with some data where these linear relationship is not 

readily perceivable. 
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So, what is Box-Cox transformation? Box-Cox transformation is a Box-Cox procedure 

automatically identifies the power transformation of Y. So, power transformation of Y generally 

Y to the power lambda where lambda is a parameter determined by the data itself. So, the power 

family includes generally Y square, root over of Y, then 1 by Y and then 1 by root over of Y. 

And remember that when the lambda value is 0 that means, when the lambda value is 0 this Y 

star is defined to be log of Y. So, this is a special case of power transformation, this log 

transformation is a special case of power transformation where lambda equal to 0.  

Now, in case of Box-Cox procedure given lambda standardized this Y and lambda to be Wi, so, 

Wi takes this value K1 multiplied by Yi to the power lambda minus 1 where lambda equal, not 

equal to 0, where lambda equal to 0 you can just directly take K2 log of Yi, where K2 is 

basically stands for 1 to n Yi to the power 1 by n and whereas, K1 stands for 1 by lambda K2 to 

the power lambda minus 1.  

So, this is how you standardize your variable based on whether your lambda is 0 or not and then 

you can use them, this is called the Box-Cox transformation, these is a generalized formula of 

Box-Cox transformation and so, you have to apply the simple linear regression on this Y1, this is 



a new response or transform response and X1 which are the inputs and find the optimum lambda 

which minimizes the sum square error.  

So, you can target for 0 that is okay. But for not equal to 0 you can try with many values and 

then you plot the values of Wi with against the sum square, the values of lambda against the sum 

square error and you can see which one is giving the minimum sum square error and that will be 

the optimum value of lambda. I will show you one example.  
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So, you can see that the normality assumptions are critical for many univariate interval and 

hypothesis tests. And it is important to test the normality assumption, so if the data are in fact 

clearly not normal. The Box-Cox normality plot can often be use to find the transformation that 

will approximately normalize the data.  

So, you can see here this is a normal probability plot. So, generally in case of normal 

distribution, you should get this type of plot, but if you are not getting this type of plot in your 

data, you should try some kind of transformation. This normal probability plot given by this 

Chambers et al in 1983 is a graphical technique for assessing whether or not a data set is 

approximately normally distributed.  

So, the data are plotted against a theoretical normal distribution in such a way that the point 

should follow, the point should form an approximate straight line, as you can see, they are 



forming an approximate straight line and departures from the straight line indicate the departures 

from the normality. And the normal probability plot is a special case of probability plot.  
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So, you can see that the histogram in the upper left, our left hand corner shows the significant 

right skewness. So, you can see significant right skewed data here. So, and so, does not, it does 

not follow a normal distribution. So, the Box-Cox normality plot shows that the maximum value 

of the correlation coefficient is at lambda equal to minus 0.3. So, at maximum value of lambda 

you can get at the value of minus 0.3. So, this is another way of selecting the optimum lambda. 

So, you can select this optimum lambda based on the correlation coefficient.  

So, the histogram. So, once you take the value of lambda equal to minus 0.3 then you could 

transform the data and now you can see they are following the normal distribution. So, we are 

getting in reasonable normal distribution. So, this is verified with a normal probability plot of the 

transformed data you can see here. 
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Centering and scaling and centering of the data, it is the most straightforward data transformation 

procedure, and it is always necessary to standardize data before processing and center and scales, 

center and generally scaling a variable to mean 0 and standard deviation 1, it is basically very 

much needed for a scattered data. And you will see in case a principal component analysis what 

which we are going to discuss in our next week, we are going to use this centering and scaling 

extensively. 
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There are some brain weight example. So, the data set consists of brain weights and the body 

weights of 62 species of mammals. So, three questions are of interest any general pattern 

between brain body weight across a number of species or is brain weight proportional to the 

body weight? Are there any usable species? And do humans have usually large brain given our 

body size? So, these are some of the data, sample data. 
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And we can see this is the brain weight versus body weight and then brain weight versus log of 

body weight. And you can see log of brain weight versus log of body weight which is where we 

are getting linear relationship. So, we should take this and then we are taking the residual versus 

fitted value they are meeting the assumption of linear regression. 
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And also the, so, the fitted regression line is log of brain equal to 0.76 log of body plus this 

intercept 2.1. R square value is 0.92 and MSE value is 0.49. And top five mammals with the 

largest and the smallest residuals we can see here. Now, this is the residual diagnostic plot and 

you can see the normal plot, normal quantile plot which is satisfying the assumption of linear 

regression.  
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And you can see that if we are taking different values of lambda at the values of 0 we are getting 

the least sum square error. That means, at the log transformation if you are doing the log 



transformation, we are getting the linear regression relationship. And this is the prediction 

interval, this is the confidence interval of mean and this is the prediction interval we can see 

here.  
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Standardized residuals is the final thing, it is the properties of the residual. So, you can see that 

mean is summation of Ei equal to 0 and then variance it is, it can be calculated by this MSE, sum 

square error by n minus 2, MSE. So, standardized or semistudentized residuals can be calculated 

by this Ei hat by root over of MSE. 

So, in brain example, human has a residual of 1.944, while root over of MSE is 0.70. So, we can 

see that the standardized residuals, if we calculate, this standardized residuals it will be greater 

than 2. So, humans have usually large brain adjusted to our body size.  
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Final slide, this MLR, so where there are more than one predictor you can see here. Instead of 

single predictor, so here you can see we are, it is the intercept and here xi1, xi2, up to xip and 

then the error term, where for i equal to n number of observation, yi is the dependent variable, xi 

is the explanatory variable you know that, beta 0 is the y intercept, beta p is the slope coefficient 

for each explanatory variable, and eta is the model’s error term also known as the residuals.  
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So, this is the difference between simple linear regression and multiple linear regression. In case 

of multiple linear regression, each regression coefficient is the amount of change in the outcome 



variable that would be expected per one unit change of the predictor, if all other variables in the 

model were held constant. We will discuss more about this in our next lecture.  
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So, these are some of the references which are used and I hope that you have learned something 

new. Let us meet in our next lecture to discuss from here and see more diagnostic features of 

multivariate data analytics. Thank you guys, let us meet in our next lecture. 


