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Welcome students to this second lecture of week 2 or in other words there are seventh lecture of 

this NPTEL online certification course of Machine Learning for Soil and Crop Management. 

And in this week, we are discussing the basics of multivariate data analytics. In our last lecture, 

we have discussed about the multivariate data, what is multivariate data, and what is data matrix, 

and what is, what are the different kinds of representation of the data like means multi-

dimensional data and how we can represent the multi-dimensional data. 

Also we have seen the associations between multiple variables, or features in terms of 

correlation. Also we have learned what is the correlation coefficient, what are their values what 

are their features. We have learned about positive correlation, negative correlation, what is 

covariance. Also we have seen the simple linear regression.  
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So, in this lecture, we are going to discuss this following concept. First of all we are going to see 

in details about different aspects of simple linear regression. And then we are going to learn what 

is confidence interval and prediction interval. And what is the difference between confidence 



interval and prediction interval in case of SLR. And also we are going to see some of the 

diagnostic plots of residuals, based on the assumption of simple linear regression. 
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So, these are the keywords, which we are going to discuss today. First of all the assumption of 

simple linear regression, also we are going to learn what is confidence interval, prediction 

interval. And then we are going to learn what is least square estimate? And then we are going to 

also discuss the slope and intercept of the simple linear regression.  

The reason for discussing this, because unless we understand this features of SLR, we cannot 

understand the multiple linear regression and different types of pitfalls of multiple linear 

regression. 
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So, let us start with the assumption of simple linear regression. We have already seen the 

discussion you know, we have already discussed in our previous lecture, what is the difference 

between a correlation and regression. Remember in case of correlation we try to see the you 

know linear relationship between two unlabeled variables and it does not depend and the 

correlation does not depend on the unit of measurement of the variables.  

However, in case of regression the regression generally identifies one dependent variable, 

another independent variable and we have discussed this dependent and independent variable. 

So, let Y be the dependent variable or response variable, and X be the explanatory variable. So, 

if you can see this plot, this plot is showing the Y versus different levels of X. 

So, the this is an example of simple linear regression, simple linear regression or model, where Y 

is the target variable and X is the predicted variable. And the relationship between the Y and X is 

linear or in other words the model assumes that the mean of Y of given X is a straight line, as 

you can see here, this is a straight line, and this straight line basically are the mean of Y given 

different levels of X. 

So, this is basically represent by this mu of this mean that is mean of Y given values of X. So, we 

can represent its as beta 0 plus beta 1 X, where beta 0 is the Y intercept and beta 1 is the slope, 

you know the equation of a straight line. So, it really resembles the equation of a straight line and 



so this mean line can be represented by this equation, whereas the actual observation can be 

considered as the mean plus an error, or residual. 

Because actual observation can occur anywhere and that can differ from this mean regression 

line and that is why the actual observation can be considered as a summation of both error as 

well as the mean of Y given different values of X. So, if we assume that the error, which is 

defined by this eta is normally distributed with mean 0 and variance sigma square, then Y is also 

normally distributed.  

So, here you can see that differ at different levels of X1, like X1, X2, and X3, you can see the 

corresponding values of Y1, Y2 and Y3 and so we are assuming that the error term is normally 

distributed and as a result, this whole Y term can also be considered as normally distributed with 

you know with a mean of beta 0 plus beta 1 X, we have already know this line and also with a 

standard deviation of sigma. 

So, think of each values of X generating a difference of population. So, you can see that you can 

resemble this condition as each value of X is generating a difference of population. So, this is 

how we represent the simple linear regression between X and Y. Again here Y is the target 

variable and X is our predictor variable at different values of X, we are getting different values of 

Y. Let us assume that these are Y1, Y2 and Y3.  

So, how we can get this Y1, Y2, and Y3, to you know if we if we draw a model, linear model, 

this linear model assume that this line corresponds to the mean of Y given different values of X 

and then we just add, or subtract the error values, or residuals to get the actual observed Y. Now, 

this Y is normally distributed and since we are assuming that the this you know this error is also 

normally distributed. So, naturally the Y will be also capital Y will be also normally distributed. 
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So, let us move to the next slide, this slide shows the basic assumptions of simple linear 

regression, you can see you know there are independent observation like X1, X2, X3 and the n 

responses are there suppose there are up to Xn. So, these n responses are Y1, Y2 up to Y n are 

also independent. So, independent observations are this X1, X2, and X3. However, Y1, Y2, up to 

Yn are dependent variables, given the levels of explanatory variables. 

Now, linearity of the mean, that is. So, the first observation says that, the n responses these 

responses Y1, Y2, Y3 up to Yn are independent, given different levels of X1, X2, X3. Again, the 

first assumption is our independent you know the Y1, Y2 and Y3 are independent given the 

different levels of explanatory variables. So, this Y1 does not depend on Y2 and Y2 does not 

depend on Y3 and so on so forth.  

Second is the linearity of the mean, or in other words if we see this, that indicates that individual 

observations are independent to each other, or in other words if there are 10 observation in this 

data set, those 10 observations are independent to each other, they are not dependent to each 

other. 

Now, second assumption is linearity of the mean, the mean for the responses we know that this 

line shows the mean for the responses, given the level of explanatory variable, these are X1, X2, 

and X3, explanatory variable is linear that is mu of Y slash X, that means given X equal to beta 0 



plus beta 1 X. So, this line is showing the linearity and so this line basically shows the mean of 

the responses given different values of explanatory variable.  

The third assumption is constancy of variation. So, the variance of the response given the level of 

explanatory variable is sigma square and this is true for all the values of X. So, the variance is 

constant the in case of responses the variance is constant. The fourth one is normality, the 

distribution of the responses given the level of explanatory variable is normal. So, we assume 

that this Y1, Y2, Y3, up to the Yn depend are they are normally distributed.  

So, again what are the four assumption? First four assumption of simple linear regression is all 

the observations are independent to each other. Second assumption is the mean of Y given the 

different levels of explanatory variable is linear. Third is constancy of variance, that means the 

variance of the response given the different levels of explanatory variable is sigma square and 

this is true for all the values of X.  

And finally, the normality of the normal distribution of the response given the level of 

explanatory variable. So, these are the four major assumptions of simple linear regression and 

why they are important we will see later on. 
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Now, here also you can see it is called the this simple linear regression is called also this type of 

linear regression is also known as the least square estimate. Here, the beta 0 hat and beta1 hat are 

considered as the estimates of original beta 0 and beta1, you know beta 0 is the intercept of Y 



and then beta 1 is the slope. So, the fitted value for case i, if we consider case i the fitted value 

for case i, which is denoted by yi hat can be considered as this beta 0 hat plus beta 1 hat Xi. So, 

this is a for a particular case and this is the predicted value. So, we are giving this hat.  

So, the residual for this case, so this is basically showing the mean value, this is showing the 

mean value, there is no residual here. But, if we subtract this value from the original observation, 

which is Yi. So we will get the ei hat, so or eta i hat, or residual. So, in this observation, if we 

subtract this, predicted values from the original observed value, then we will get the residual for 

this observation.  

The least square criterion says that, we have to find that beta1 and beta 0, so as to minimize the 

sum square of error. So, we can see here, if sum square error varies from 1 to where i varies from 

1 to n, the sum square error, that means the error term. So, the error term is basically the 

difference between the original observed values and their predicted values is and then if you take 

a square. So, this least square estimate gives the least you know least is you know least value for 

this type of condition. 

So, you can see here, we can draw these X and Y relationship in different fashion. Now you can 

ask why we are sticking to a particular one? The reason for sticking to this particular one is this 

line is giving I mean for this line, if we draw this least square estimate, or linear regression line, 

for this linear regression line, we will get the least value if we take the summation of the all the 

error terms. 

So, if you take the summation of the error terms in this case, suppose this is ea squares, and then 

suppose this is e b eta b squares and then you can take, and suppose this is i to n eta i square. So, 

in this case you can see this expression is giving the least value. So, that is why we are selecting 

this, we are selecting this line as a least square estimate. So, again guys, this is called the least 

square line, because this line gives the least square least estimate, or least value of the summation 

of the total error terms. 
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Now, if we move to see these in you know these terms visually, it will be much more clear. So, 

let us consider this is Y by X and we can see for different values of different values of X will get 

different values of Y like Y1, Y2, Y3, Y 4.  

So, the fitted model is basically this Y1 hat equal to beta 0 hat plus beta 1 hat Xi. However, these 

are the error terms like e1, e2, e3, because if this is the original observation and we consider this 

Y1 and its predicted value lies in this line. So, the vertical distance between these two points is 

the error term, which is denoted by eta hat 1.  

So, similarly for all other points, we are getting their corresponding error terms, that is eta 2 hat, 

eta 3 hat, eta 4 hat, eta 5 hat, eta 6 hat, eta 7 hat. So, if you take the sum of the square of each of 

this errors for this line will get the minimum value. So, that is why we are selecting this line not 

any other line. So, our idea is to find this beta 1 and beta 0. So, that we can get the minimum 

value of this term. So, for which for the line which gives the line which gives this minimum 

value of this term is considered as the fitted linear regression line. 
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Now, if you see the SAS output for this type of regression problem, you can see here again we 

are using the pros reg and for the Forbes data set, we have already discussed the Forbes data set 

and our model is to predict the logarithm of pressure with the boiling point. And if we run it, we 

can see that some important matrices at this point of time I will just focus on 2 or 3.  

So, here you can see the intersect values that is beta 0 you can get the value of 0.42 and the bp of 

you know the estimate value estimated value of bp or boiling point is 0 point the slope of bp, the 

slope of bp is basically 0.008. And root mean square error is 0.00379, whereas the r square 

values is 0.99. 

So, that shows that this you know there is a very strong relationship between the pressure and 

barometric pressure logarithm of barometric pressure as well with the with the boiling point and 

you can see the t value and the probability of the t statistics for bp, which is less than 0.001, that 

means it is highly significant. So, this shows the (import), this shows the interpretation of the 

SAS output. 
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Now, using calculus, we are not, we do not have time to discuss it, but using calculus the 

estimated slope of the line can be, can be calculate as beta1 hat equal to this is the term and 

ultimately if you simplify it, you will get r, which is the correlation coefficient multiplied by 

standard deviation of Y by standard deviation of X. So, this is how you get the estimated slope of 

the line.  

So, remember that the sign of beta1 hat is the same as the sign of r. So, if we are having positive 

slope, positive correlation, then we will get the positive slope, if it is less than, if it is negative 

that means there is negative slope. So, the estimate for the intercept, we can calculate. Now, once 

we calculate the estimate for the slope, we can calculate the estimate for the intercept by simply 

subtracting this beta 1 X bar from the mean of Y. So, X bar is basically the mean of X values, 

whereas Y bar is the mean of Y values.  

So the, remember that the fitted SLR model shall always pass to the point X bar and Y bar. So, 

these are, this is how you calculate the slope and intercept in case of simple linear regression. 
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Now, what is the partial sum square in SLR? So, there are different terms in the SLR. So, let us 

consider that this is a, this is a mean of Y. So, here if we consider this term Y i minus Y bar, so 

you can see here this is Yi and the Y bar lies here. So, the total variation, so total variation that is 

the this the deviation from the mean Y without model adjustment is basically, this is the linear 

distance Y bar minus Yi. This is the total variation.  

If there was no variation it should be in the mean line. However, since there is variation we can 

see Y i is here. So, the total variation can be considered as a Y i minus Y bar. And this can be 

decomposed further into error term and model term. So, what is the error term? So, this is the 

model line.  

So, the error, so the model, so the so the error term is of course Yi minus Y hat Yi hat we know 

that, Yi hat is the predicted values which lies in this line and Yi is the actual observation. So, the 

difference is Yi minus Yi hat. So, this is the error term which is residual which cannot be 

explained by the model, but if we take Yi hat minus Y bar.  

So, this is the difference Yi hat minus Y bar these difference these linear difference can be 

explained by the model. So, this variation can be explained by the model. So, if we decompose 

the total variation we can get this Yi minus Yi hat plus Yi hat minus Y. So, these two 

components will get error as well as model. 



Now, if we take the sum square of total so this is the total variation, so if there is a sum square of 

total that shows the sum square of error plus sum square of model or regression. So, with the n 

minus 1 degree freedom in case of sum square total and in case of sum square error we get the n 

minus 2 degree of freedom, and in case of sum square regression will get 1 degree of freedom. 

So, here you can see these terms, so sum square total is basically the sum square of deviation 

from the mean Y, so sum square of deviation from mean Y, so this deviation, this deviation. So, 

if you take this deviation for all the points for different values of X and then we will take a sum, 

we will get the sum square total, sum square error you already know, some square or some 

square residual we have discussed in our you know last slide. 

So, some square error is basically the sum square of residual after adjusted by sum square, by the 

adjusted by the simple linear regression model which is part of the variation of Y which cannot 

be explained by the SLR model. So, this variation or residual cannot be explained by the residual 

model. And finally sum square regression is the reduction in the variation attributable to the SLR 

model which is denoted by SLR, SSR sum square regression. 

So, this variation which is from the Y bar line to this regression line, this variation can be 

addressed by this regression, so sum square regression is basically the summation of square term 

of this difference. So, we can see that regression coefficient is basically 1 minus sum square error 

by sum square total, so this is how we calculate the or in other words actually what happens the 

regression coefficient basically shows how much variability you can explain through your 

regression model. 
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So, in other words we can say that sum square or in other words we can say R square which is 

the indication of the variability which is explained by the model, so we can, since we can say that 

the sum square regression by sum square total. So, out of the total variation how much 

percentage is addressed by the regression model? 

So, we know that sum square regression is basically sum square total minus sum square error, 

sum square total, so if we simplify it we will get sum square error by sum square total. So, this is 

how we calculate this R square. R square values generally varies from 0 to 1, I mean if there is 

no relationship between X and Y, we will get the value close to 0 and as there are much more 

strong relationship we will see that R square values goes towards 1. 
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And what are the other matrix? The other matrix you can see root mean square error is the 

estimation of sigma, so is the estimate of sigma. So, you can see that sigma, so this sigma hat can 

be calculated by sum square error by degree of freedoms of SSE, so this is the sum square error 

which you know or sum square residual and degree of error, degree of freedom for some square 

error is n minus 2, so this is how you can calculate this the estimate of sigma. 

R square is the proportion of the total variance accounted by the model, so we have already, I 

have already showed you sum square regression by sum square total that is 1 minus sum square 

error by sum square total. And for the SLR model it equals to the correlation. So, remember that 

the R for the for a simple linear regression model, R square basically denotes the square of the 

correlation coefficient. So, R square near to 1 where x explain most of the variability in Y and 

where R square near to 0 X explain little of the variability of Y. 
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So, now confidence interval or testing beta 1 slope we can see that if given the error term is 

normally distributed with the mean of 0 and a standard deviation sigma, it can be shown that for 

SLR simple linear regression beta 1 hat or the estimate of the slope is also normal and which 

varies which normally distributed with a mean of beta 1 and with a standard deviation of sigma 

beta 1 hat, so where this sigma beta 1 hat is equal to this term that is square root of sigma square 

by n minus 1 standard deviation of X square. 

So, we can estimate this sigma beta 1 hat by this sigma hat beta 1 and then we can calculate this 

by using this formula. And then, if we can take a confidence interval for a given level of alpha 

we will have, this is called the confidence interval, whereas this is beta 1 hat plus minus t alpha 

bY2 n minus 2 degree of freedom. So, root over of MSE n minus 1 then this standard deviation 

of X.  

So, for hypothesis testing if we consider the confidence interval or testing of beta 1, if we want to 

test the confidence interval of beta 1 we can use this formula to get the confidence interval of the 

slope. Now, for hypothesis testing on beta 1 with H0 equal to B1, B1 star the test statistics is 

basically this one. So, this is how you can do the hypothesis testing for beta 1. The important 

take home message from this slide is using this formula you can easily calculate the confidence 

interval for the slope of any simple linear regression. 



Friends so today let us wrap up our discussion here and I hope that you have learned, you have 

something new. And most of these things are already you have gone through it previously I 

assume. So, this will be really required when we discuss the multiple linear regression. So, 

please stay tuned and let us meet in our next lecture to discuss from here and we will discuss the 

different aspects of confidence interval, prediction interval and also the multiple linear 

regression. Thank you. 


