Machine Learning for Soil and Crop Management
Professor Somsubhra Chakraborty
Agricultural and Food Engineering Department
Indian Institute of Technology Kharagpur
Lecture — 57
Digital Soil Mapping with Categorical Variables (Contd.)
Welcome friends to this second lecture of last week that is week 12 of NNPTEL online
certification course of machine learning for soil and crop management. And in this week we

are trying to discuss the digital soil mapping with categorical variables. In our first lecture,

we have already discussed the hybrid approach of regression Kriging.

And in this lecture, we are going to see how to calculate several how to see different types of
accuracy measures from a confusion matrix and we are going to first develop a confusion
matrix and then based on that confusion matrix we are going to calculate several model

accuracy parameters.
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CONCEPTS COVERED

* Categorical Modelling in DSM

* Kappa coefficient and other accuracy measures

* Multinomial logistic model

And so, these are the concepts which we are going to discuss first of all we are going to
discuss the categorical modeling in DSM and then we are going to discuss the Kappa
coefficient and other accuracy measures and then we are going to discuss the multinomial

logistic model.
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KEYWORDS

* (Categorical model
* Kappa coefficient

¢ User’s accuracy

* Producer’s accuracy

Terron

So, these are the keywords categorical model, then Kappa coefficient, user accuracy,

producer’s accuracy and Terron. These are some of the keywords for this lecture.

(Refer Slide Time: 1:42)

IMPORTANT QUALITY MEASURES

1. Overall accuracy
2. User’saccuracy
3. Producer’s accuracy

. Kappa coefficient of agreement

And also some important quality measures we are going to see in this lecture on the overall

accuracy, user’s accuracy, producer’s accuracy, Kappa coefficient of agreement okay guys.
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[using ordinary kriging]

> plot(map.RK2, main = "Kriged residual")
> pred.stack <- stack(map.RKl, map.RK2)
> map.RK3 <- calc(pred.stack, fun = sum,

& filename = "cStock 0_5_finalPredRK.tif",

+ format = "GIiff", progress = "text", overvrite =
T)

> plot (map.RK3,

+ main = "Regression kriging predicted 0-3cm log

+ carbon stocks (0-5cm)")
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So, let me just go ahead and discuss we are going to discuss this categorical model. But
before going to discuss the categorical model, let us again call this library ithir. Let us call
this library ithir and then for this lecture I am going to develop in a contrived example. Where
we are going to develop a confusion matrix using some values with for number of rows 4 and

number and 4 number of columns.

And we are going to give some names of those columns and some and also we are going to
see how these coefficient matrix looks like. So, for this contrived example, we are going to
use this matrix function to develop this confusion matrix once we have developed this
confusion matrix, let us assume that we are giving the name that these four are the different

names for different classes and of course, the column name is also same.

So, let us see that this confusion matrix you can see here, this is the confusion matrix of
course, in this confusion matrix, these diagonal elements like in case of DE. So, here you can
see 5, 15, 31, 11 so, all these 5, 15, 31, 11 are the so, the diagonal components of this

confusion matrix, it is showing the correctly classified samples.

So, here along these columns these are the observed classes and these are the predicted
classes in the row, in the row we can see the predicted classes in the columns we can see the
observed classes. So, if we see that what is the total accuracy of classification accuracy. So,
for getting the total classification accuracy, we are going to use the, for calculating the total
classification accuracy it is important to calculate the sums of all the columns. So, for that or

in other words total observation in each class.
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So, we can use these col sums function from this confusion matrix and let us see that for DE
it is 8. So, these are the number of samples within each class these are observed values. Now,
also at the same time we can also use these row sums function to get the total prediction in

each of these classes.

So, you can see the total prediction in DE is 5, for VE is 26, for CH is 34, for KU it is 18.
Now, as I have said previously that the numbers on the diagonal of the matrix will indicate
the fidelity between the observed and the subsequent prediction and numbers on the off

diagonals are shown as the misclassification.

So, of course, you can see in this contract examples or in this confusion matrix, you can see

here this 5 shows the fidelity between the DE and DE, 15 shows the fidelity between VE and



VE. So, observed and predicted class 31 shows the, fidelity between observed CH and the
predicted CH and 11 shows the fidelity between observed KU and predicted KU.

And all other values like 1, 2 these are the off diagonal points and shows the misclassification
within this D E class these 5 is the misclassification within the VE, this is a misclassification
within the 1 is the misclassification within the CH and these 12 will be the misclassified

samples within the clear KU class.
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Now, to calculate the overall accuracy, we are going to use this formula that is total correct

by total number of observations. So, total correct the sum of the diagonals and total number

of observation you can take the sum of the columns sums.

So, if we go and use this for this we are going to use this ceiling function. So, ceiling function
some of the diagonal of confusion matrix by some of the column sense of the confusion
matrix multiply by 100. So, you can see that this shows the overall accuracy that is 75

percent.
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RECALL: ACCURACY OF INDIVIDUAL CLASSES

+  Accuracy of individual classes can be computed in a similar

manner as that of overall accuracy.

* However, there is a choice of dividing the number of correct

predictions for each class by either the totals (observations or

predictions) in the corresponding columns or rows respectively.

+ Traditionally, the total number of correct predictions of a class is
divided by the total number of observations of that class (i.e.

the column sum).

Now, if we are concerned about the accuracy of the individual class, then we have to
calculate these accuracy of the individual class in two ways. One is using user’s accuracy and

other is producer’s accuracy.

Now, if you go back to our PPT and see what are the user’s accuracy and producer’s accuracy
you have to recall that accuracy of individual classes can be computed in a similar manner as
that of overall accuracy. However, there is a choice of dividing the number of correct

predictions for each class by either the total observation or the predictions.

So, you can either take the division between the number of correct prediction by the number
of total prediction within that class or number of observation within that class in the

corresponding columns or rows respectively.

Now, so, if we again we can take, we can calculate that, by for individual class we can divide
the number of correct prediction by the number of observation or by the number of prediction
in the corresponding columns and rows respectively. And traditionally, the total number of
correct prediction of a class is divided by the total number of observation in the class that is

the column sum it is a traditional way.



(Refer Slide Time: 8:46)

RECALL: ACCURACY OF INDIVIDUAL CLASSES

¢ This accuracy measure indicates the probability of an

observation being correctly classified and is really a

measure of omission error, or the “producer’s accuracy”.

¢ This is because the producer of the model is interested in

how well a certain class can be predicted.

Now, these accuracy measures when we calculate the number of samples divided by the
column sum, then these accuracy measure indicate the probability of an observation being
correctly classified and is really a measure of omission errors or it is also known as the

producer’s accuracy.

This is because the producer of the model is interested in how well a certain class can be

predicted. So, this is called the producer’s accuracy and also calculate the omission error.

(Refer Slide Time: 9:21)

RECALL: ACCURACY OF INDIVIDUAL CLASSES

¢ Alternatively, if the total number of correct predictions of
a class is divided by the total number of predictions that
were predicted in that category, then this result is a

measure of commission error, or “user’s accuracy”.

* This measure is indicative of the probability that a
prediction on the map actually represents that particular

category on the ground or in the field.

Now, I told you there is another way of calculating the accuracy of the individual class by
dividing the number of correct prediction by the samples within the individual, individual

row so, if the total number of correct predictions of the class is divided by the total number of



prediction that were predicted in that category, then this result is also known as the user’s

accuracy and it basically measures the commission error.

Now, this measure is indicative of the probability that a prediction on the map actually
represents that particular category on the ground in the field or in the field. So, these are the
two types of accuracy measures for individual classes. One is called the user’s accuracy

producer’s accuracy another is called the user’s accuracy.

Again, producer’s accuracy measures the omission error whereas the user’s accuracy
measures the commission error so, these are the differences for producer accuracy, we have
to divide the number of correctly classified samples with the individual column sum, but in
case of the user’s accuracy, we have to divide the number of correctly classified sample by
the correct by the row sum. So, this is the difference between producer’s accuracy and user’s

accuracy.
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RECALL: KAPPA COEFFICIENT

The Kappa coefficient is another statistical measure of the fidelity

between observations and predictions of a classification.

*  The calculation is based on the difference between how much agreement

is actually present (“observed” agreement) compared to how much

agreement would be expected to be present by chance alone (“expected”

agreement).

The observed agreement is simply the overall accuracy percentage.

Now, also, the Kappa coefficient is another the Kappa coefficient is another statistical
measures or the, of the fidelity between the observation and prediction of a classification.
And the calculation is based on the difference between how much agreement is actually
present that is observed agreement compared to how much agreement would be expected to

be present by chance alone that is expected agreement.

So, observed agreement by expected agreement gives you the Kappa coefficient. So, observe
agreement is simply remember that in this Kappa coefficient calculation this observed

agreement is showing basically the overall accuracy percentage.
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RECALL: KAPPA COEFFICIENT

We may also want to know how different the observed agreement is from

the expected agreement.

*  The Kappa coefficient is a measure of this difference, standardized to lie
ona -1_Ato 1 scale, where 1 is perfect agreement, 0 is exactly what would
be expected by chance, and negative values indicate agreement less than
chance, i.e., potential systematic disagreement between observations and

predictions. The Kappa coefficient is defined as: Py=p
0~ Ve

K=
1-P,
where po is the overall or observed accuracy, and pe is the expected accuracy, where:
i ol ('WSI""’ T0 is the total number of observations and n is
Dp = X
l; ’:ll 0 ) 0 )

the number of classes

So, we may also want to know how different these observed agreement is from the expected
agreement. So, this Kappa coefficient is a measure of this difference and standardized to a
scale of minus 1 to plus 1. So, Kappa coefficient can take any value from minus 1 to plus 1
whereas these plus 1 is showing the perfect agreement 0 is exactly what would be expected
by chance and negative agreement that is negative values indicate agreement less than the

chance.

So, that is potential systematic disagreement between the observation and then prediction. So,
the Kappa coefficient can be calculated by using this formula where this k equal to p 0 minus

pe and 1 minus pe.

So, p 0 is the overall or observed accuracy, we know that we have already calculated that and
p is the expected accuracy where this pe can be calculated by using this formula that is T O
stands for Total number of observation, n is the number of classes and this is the individual
column sum and individual rows sum from 1 to n. So, this is how you calculate this Kappa

coefficient.
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RECALL: KAPPA COEFFICIENT

< Less than chance agreement.
0.01-0.20 Slight agreement.

+  0.21-0.40 Fair agreement.

*  0.41-0.60 Moderate agreement.

0.61-0.80 Substantial agreement.

0.80-0.99 Almost perfect agreement

And of course, this Kappa coefficient can be classified based on its value, when it is less than
0 of course this shows the less than chance agreement then 0.01 to 0.20 that shows the slight
agreement. It is 0.21 to 0.40 fair agreement, 0.41 to 0.60 moderate agreement and then 0.61
to 0.80 substantial agreement and 0.80 to 0.99 almost perfect agreement. So, this is how you

classify the values of the Kappa coefficient.
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Now, let us go back to our R and see how we can calculate these different components. So, if

we want to see the column sum, so, this is the, we want to see the producer’s accuracy. So,
you can see that confusion matrix we are going to sum the diagonal elements of the confusion

matrix by the, and we divide it by the column sums multiplied by 100. Of course, this will



give you the producers accuracy, and then if you are going to get the user's accuracy, it will

be simply dividing by the sum of the rows individual rows.

Now, if we want to get the Kappa coefficient remember in R instead of using simple goof
function, we are going to use this goofcat function, goofcat function is goodness of fit of
categorical model. So, using this goofcat function here you can get the results. So, we are

going to use this goofcat function and let us see how this Kappa coefficient can be calculated.
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So, we have already know how to about this confusion matrix. Now, we are going to show
you how to calculate this goofcat based on this confusion matrix. So, here we are going to use
this confusion matrix argument and here we are giving this con dot mat is our confusion

matrix.

Let us see just if we run this thing then you will see that how this confusion matrix will give
you the results. So, this is the confusion metric overall accuracy we already know and then
producer’s accuracy for individual classes you can see for 63 percent for DE, 75 percent for

VE, 97 percent for CH, and 48 percent for KU.

And case of user’s accuracy 100 percent for DE, then 58 percent for VE, then 92 percent for
CH, and then 62 percent for KU. So, and also finally, the Kappa coefficient is 0.63. So, this is
how, for any confusion matrix using the goofcat function in R you can calculate not only the
user accuracy producer’s accuracy, you can also calculate the Kappa coefficient and based on
the value of the Kappa coefficient, you can conclude whether that is accurate. How much

agreement between the observed category and the expected category you are getting.
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MULTINOMIAL LOGISTIC REGRESSION Comparing the LP and Logit Models

Used to model nominal outcome variables, in (B
which the log odds of the outcames are modeled as

a linear combination of the predictor variables.

*  Since dealing with categorical variables, it is v

necessary that logistic regression take the natural

logarithm of the odds (log-odds) to create a

continuous criterion.

The logit of success is then fit to the predictors

using regression analysis.

Now, guys, let us move ahead and let us discuss one actual categorical model in our multi in
which we use in digital soil mapping that is multinomial logistic regression. Now,
multinomial logistic regression generally we use it for modeling the nominal outcome. So, it

is a kind of a logistic regression.

And we generally use it for modeling that nominal outcome variable that is categorical
variables in which the log of odds of the outcomes are modeled as a linear combination of the
predictor variables. Now, the logistic regression we have already discussed the logistic

regression.

Now, in case of logistic regression instead of the linear probability model we generally use
the logistic regression model to keep our probability between these 0 to 1 threshold levels and
then we fit the linear regression based on the log of odds or so, this is the logistic model.
Now, since dealing with the categorical variables it is necessary that logistic regression takes
the natural logarithm of the core, of the odds that is log of odds to create a continuous

criterion.

And this logit of success is then fit to the predictors using the regression analysis, we already
have covered this thing in our regression discussion and in our classification discussion

previously in week 4. So, we already know that this is the logistic regression.
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> library|rasterVis) a

> data(hvTerronDat)

> View(hvTerronDat)

> data(hunterCovariates)
> nanes (hvTerrondat)
1] "x" "y "terron"

> #Transform the hvTerronDat data to a SpatialPointsDataframe.

> coordinates (hvTerronDat) <- ~x +y

> DSM data <- extract(hunterCovariates, hvTerronDat, sp = 1, method
= "simple")

> DSM_data <- as.data.frame(DSM _data)
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> data(hunterCovariates)
> nanes (hvTerrondat)
1] "x" B "terron"

> #Transform the hvTerronDat data to a SpatialPointsDatarrame.

> coordinates (hvTerronDat) <- ~x +y

> DSM_data <- extract(hunterCovariates, hvTerronDat, sp = 1, method
= "simple")

> DSM_data <- as.data.frame (DSM data)

> View(DSM_data)
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DSM data <- extract(hunterCovariates, hvTerronDat, sp = 1, meth)
DSM_data <- as.data.frame(DSM _data)

str (DSM_data) -

which (!complete.cases (DSM data))
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€9 library(nnet)
€0 set.seed (655)
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> which (!complete.cases(DSM data))

integer (0)

> DSM _data <- DSM_data[complete.cases (DSM datal, ]
> library (nnet)

> set.seed(555)
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Now, we are going to see how we can execute this multinomial logistic regression using in
DSM using R. So, you can see guys we are going to use this multinomial logistic regression,
let us see how to go with this and so, we are going to use this ithir package and then let us

call this library ithir. And then let us call this library raster.

And we are going to install these rasterVis package for visualization for raster visualization.
So, we are going to call this library rasterVis and then hvTerronDat. So, this is the data which
we are going to use so, this hvTerronDat if you click on it, you will see there are 1000s

observation with the three fields x, y and Terron.

So, Terron is basically the class of soil based on certain characteristics. And there are 12
Terron classes from 1 to 12 and they are named accordingly. So, our idea our, the objective of
this exercise is to use this multinomial logistic regression to predict the multinomial logistic

regression to predict these Terron classes using the covariance data.

Now, what are these covariance data, the covariance data is hunterCovariates for the same
location. So, we are going to download these hunterCovariates, hunterCovariates is of course,
you can say it is a large raster stack object and then let us see the names of the hvTerronDat.

Of course, there are three names x y and Terron you know that.

Now right now this Terron is in a tabular format, so we need to convert it to the special points
dataframe you know that. So, for that we are going to use the coordinate function. So, we are

instructing R that please understand that these x and y are the 2 coordinates.

Now, you can see it will be changed to hvTerronDat has changed to former class of special
points data frame. Now, as they as these data are of the same special projection of the
hunterCovariates we do not know we do not need any kind of coordinate transformation. So,

we can do direct intersection we know how to intercept the data.

So, for that we are going to extract function and then we are going to see we once we have
extracted that now, we converted them back to simple data frame because we need to run
some models and models can be only run in simple data frame. So, now, you can see DSM

data similarly 1000 observation of § variables. What are these 8 variables?

So, you can see x y Terron and then 1, 2, 3, 4, 5 different covariates altitude of channel
network, drainage index, light installation, Terron witness index, and gamma total count these
are the 5 covariates which are there in the hunter covariates file. So, we have extracted them

for these locations.



Now, when data see the structure, so, the structure just like we have seen 1000 observation 8
variables and you can see here altitude of channel network, then drainage index, light
installation, Twi, gamma total count and so on so forth. So, now, we want to keep only the
complete cases and we want to just keep that for further modeling exercise for this

multinomial logistic regression we are going to use this library nnet.

So, this nnet we are going to use. So, these nnet is there in the carrot package which we have
already installed previously. So, I am going to call this library nnet, then we are going to set
the seat 655 and then we are going to again just like previously we are going to select the 70

percent of the data as the training data set.

(Refer Slide Time: 22:16)
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| data as.data. frams (DSM_data Factor w/ 12 levels "1",
56 str (DS data)
&7 which (!conplets.cases (DM data))

data DSM _data[complete.cases (DSM_data),

Named num [1:238] 2.85 3.16 3.21 2,98 2...
Named num [1:103] 2.51 2.45 2.51 2.42 2.
num [1:103] 2.

Named num [
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> which DSM_data)) c‘*

nteger (0) /
ta <- DSW_data[complete.cases (DSM data), ]

> set.seed(555)
> training <- sample (nrow(DSM data), 0.7 * nrow(DSM data))
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€9 probs.hv.MNLR <- fitted (hv.MNLR)
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74 4 nost prokabls T 1ass
75 pred.hv.MNIR <- predict (hv.MNLR)

76 sunmary (pred,hv.MILR)

MLR.pred.rhC Named num [1:238] 2.86 3.11 3.18 2.86 2.,
MIR.pred.rhV  Named num (1:103] 2.53 2.55 2,52 2,52 2.,

77 med. rh.V Named num [1:44] 5.28 5.28 5.€9 7.73 12.,
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> # most probable Terron class X

> pred.hv.MNIR <- predict (hv.MNLR) / g"

> summary (pred.hv.MNLR) ¥
1 2 3 4 5 6 7 8 9 10 11 12
21 7 60 62110 73 163 115 18 29 12 24
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Now, we are going to fit the multinomial logistic regression using our target is Terron and
our predictors are AACN and all these 5 covariates and then we are going to use this our
covariates as predictors. So, you can see using the summary function, you can allows us to
see the linear models on the each of these Terron class which are the results of the log odds of
the each soil class model as a linear combination of the covariates and log odds of each class

model as a linear combination of the covariates.

So, if you click on the summary status of you can see here for there are 12 models and for
these 12 models you can see for each of these model, they have been predicted using a linear
regression, their coefficients and standard errors and all these things are there. So, once we
know this so, log of odds for individual classes can be represented as a linear regression, and

we have seen these values of the coefficients.

Now, once we have developed this model multinomial logistic regression Now, let us
consider let us calculate the probabilities class probabilities. So, we are going to get these
class probabilities and then once we calculate this class probabilities that is the probability of

the class then let us see the first 6 or 8 on that top of data frame a poor probability.

So, you can see top of the data frame of the probabilities for 6 first for the 12 classes, you can
see here the results and from there you can get the most probable Terron class also. So, for
getting the most probable Terron class we are going to run this thing and then we are going to

see the summary of the most probable Terron class.

So, the Terron class 1 appears 21 times, Terron class 2 appears 7 times and so on so forth.
Now, once we have done that let us see the internal validation internal validation means
calibration again we are going to use this goofcat function using this goofcat function our

observed and predicted values we just fit it.

Now, you can see these goofcat function will show this is the confusion matrix and this is the
overall accuracy, producer’s accuracy and user’s accuracy. So, you can get the values for
each of these variables each of these classes each of these Terron classes using this goofcat

function.
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Warning message:
In .gd SetProject (object, ...) : NOT UPDATED FOR PROJ >= 6

> # class probabilities, see the "Type".

> map.MNLR.p <- predict(hunterCovariates, hv.MNIR, type = "probs", i

ndex = 1,

+ filename = "edge MNLR probsl.tif", format =
"GTiff", overwrite =T,

+ datatype = "FLT4S")

Warning message:
In .gd SetProject (object, ...) : NOT UPDATED FOR PROJ >= 6
> map.MNIR.c <- as.factor (map.MNIR.c)
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Attribute Table

i *HVI_002", "HVD_003", "HVT 004"
"HVI_006", "HVI 007", "HVI 008", "HVZ 009"

g8 column to the Raster

€9 rat evels (map.MVLR.c) [[1]]
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Warning message: .
In .gd SetProject (object, ...) : NOT UPDATED FOR PROJ >= 6

> # class probabilities, see the "Type".

> map.MNLR.p <- predict(hunterCovariates, hv.MNLR, type = "probs", i
ndex = 1,

+ filename = "edge MNLR probsl.tif", format =
"GTiff", overwrite =T,

+ datatype = "FLT4S")

Warning message:

In .gd SetProject (object, ...)
> map.MNLR.c <- as.factor (map.MNLR.C)
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> levels(map.MNLR.c) <- rat

> #4 HEX colors

> area colors <- c("#7F0000", "§38A800", "#73DFFF", "#FFEBAE", "#ABA
800", "#0070FF",

it "$FFATTE", "#7TAFSCA", "#DTBOYE", "#CCCCCC", "#BAD
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>
> # plot

> levelplot (map.MNLR.c, col.regions =
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> levels(map.MNLR.c) <- rat

> # HEX colors

> area colors <- c("#FF0000", "#38A800", "#73DFFF", "#FFEBAF", "+ASA

800", "#0070FE",

79E", "#FFFF00")

>
> # plot

> levelplot (map.MNLR.¢, col.regions =
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Now, let us go for the external validation. Similarly, using the validation data minus training

dataset, you are going to get these results. So, here you can see that some of the classes are
showing the 0 accuracy. So, that means, our model was not accurate to accurately predicted

the probabilities for these classes specifically for Terron class 2 Terron class 9.

So, this is the inference from that Kappa coefficient is 0.34 and then let us see the class we
can plot we can map the probabilities as well as most probable class. So, we can plot it the

most probable class or we can map it. So, for my class a raster layer has been generated.

Now, once we have done that, there is a new thing that is you can use the add a land class
column to the raster attribute table. So, here you can see that we are using a raster attribute
table we can add a land class column that is called raster attribute table in the raster attribute

table we are giving the different colors for each of these classes.

So, these colors are nothing but the hex colors, I request you to go ahead and see the hex
color what are the hex color codes and how these hex color codes are important. So, here this
followings script is very much important for producing the color map for showing this Terron

and classes.

So, here for each of these Terron for 0 for, 0 0 1to 0 0 0 0 2 0 1 2. So, for each of these
Terron we have assigned a particular color using these hex color codes, and now we are
going to see the plot. So, if we run it, let us see how it looks like. So, this is the multinomial

logistic regression predicted classes.

So, you can see these are the Terrons 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12 and this is how we can

see that the most probable class we can clearly see here. So, also here you can see when we



are showing the we want to see the class probabilities. So, here in the first instance we are

getting the most probable class in the second instance we are getting the class probability.

So, using here you can see we are using the type of argument we are using the probabilities
and here you can see we have we can index any classes suppose, we want to see the
probability of Terron class 1. So, we are giving these index 1 so, we can change this number

from 1 to 12 and then we can see the probability of that class in the total area of interest.

So, here using these two sets of comments you can either produce the most probable class at
the same time you can produce the map of class probabilities also. So, here in this map we are
getting the most probable map most probable class. So, in this maps it is showing what are

the most probable class in these different zones.

And here we are using these hex color codes and these hex color codes have been added to
these individual classes. And you can go ahead and see the hex color codes and how it has
been assigned you can gather more information and this is how we produce the map using

this categorical model.

(Refer Slide Time: 29:51)
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Okay guys. So, I hope that you have you have got some good knowledge and this is again,
this book should be read for more details about this multinomial logistic regression based
mapping of soil properties. So, I Hope that you have gathered some useful knowledge. And
let us meet in our next lecture, where we will see how to utilize the C 5 regression model as
well as the random forest for categorical mapping in the digital soil mapping. So, thank you

guys, let us meet in our next lecture.



