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Welcome friends to this fourth lecture of week 6 of these NPTEL online certification course
on Machine Learning for Soil and Crop Management. And in this week, we are talking about
use of machine learning for portable soil and crop sensors. And in our first three lectures, we
have discussed about the proximal soil sensors. And then we have discussed about site

specific nutrient management smart soil sensing network.

And then we have talked about the portable XRF. We have seen the evolution of portable
XRF from using the simple statistical model to machine learning model, their application in
different aspects of soil, different physical chemical properties of the soil and how they are
very expert or very much helpful for predicting different types of soil parameters we have

seen.

So, we will continue from there, we have started discussing about model fusion between the
diffuse reflectance spectroscopy and PXRF. And today, we will go from there. And we will

discuss some applications of model fusion.
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So, if you see the concepts, which are going to cover in this lecture are merely sensor fusion,
then I will be showing you some application of PXRF for plant elemental content

measurement. And then we will be starting discussing about the Nix colour sensor.
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And some of the keywords which we are going to discuss are Nix, organic carbon, colour

space model, RGB and Munsell soil colour.
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So, if you see the portable XRF and diffuse reflectance spectroscopy, we have already seen
that these two methods are useful individually for predicting different soil properties. We
have seen the application of DRS in our previous week. And in this week, we are talking
about PXRF application for different soil properties. Although these two sensors are accurate,

and they show huge potential for predicting multitude of soil properties.

We have seen that when we combine the dataset from these two sources together, they gives
some synergistic result. What is the synergistic result? As you can see in the topic of the slide
that gives 2 plus 2 equal to 5 that means, when we combine the dataset from these two
sensors together, we get better prediction accuracy than using the individual sensor in
isolation. Because we have found there is some kind of complementarity between these two

types of dataset.

Diffuse reflectance spectroscopy or in other words, the spectral method is sensitive to
wearing colour properties or chromophores. For example, soil texture, then soil organic
carbon, they impart differences in soil colour. So, this diffuse reflectance spectroscopy is
sensitive to this colour change. However, the heavy metals do not have any spectral, direct
spectral signature in the diffuse reflectance spectra, although they can be coexist, they can
coexist with organic matter and this co-variation is helpful for their identification or

prediction using diffuse reflectance spectroscopy.

On the other hand, portable XRF is not very suitable for predicting organic matter, but it can
predict different metals and elements. So, when we combine the spectral data as well as

PXRF data together, then we can see some kind of complementarity between these two types



of dataset. And as a result, they will give higher prediction accuracy then using individual

sensors alone.
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So, that notion of these synergistic effect by fusing the portable XRF as well as DRS together
helps to generate the first patent in this aspect. Myself and Professor David Weindorf, we
jointly applied for a US patent which shows the novelty of using PXRF and DRS data for
better soil prediction. And so, we got this patent, then the name of this patent is portable

apparatus for soil chemical characterization.
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Now, remember, there are different ways through which we can fuse the dataset. One of the

simple methods of using the dataset is simple concatenation. That means, we gave the



elemental data and we get the elemental data from PXRF, and we get the spectral data from
DRS and we just simply merge them together in a single spreadsheet and then use them as

predictors in the prediction model.

So, this is the simplest way of merging these two datasets. So, one of the first application we
tried this sensor fusion approach is to predict the soil salinity. So, we collected several
hundreds of soil samples from Western Texas of US and from some saline lake. And these
saline samples as you can see, the salt crust are clearly visible on the soil, in the soil and these
salt affected soils were first sampled and then scanned via PXRF as well as the diffuse

reflectance spectroscopy.

Apart from combining these PXRF and DRS, we have also combined the Landsat bands,
which is a satellite band, satellite sensor. So, Landsat satellite sensor bands are also used with
portable experiment DRS data and all these three in combination produce higher prediction

accuracy together for predicting the soil salinity.
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So, you can see these are the two location. We have collected the samples and using the
support vector regression while combining all these data sets, we have got very good r square
values with a value of 0.95. So, our model was highly accurate to predict the log transform

electrical conductivity values as a measure of soil salinity.

And using the principal component analysis, we were able to segregate the samples coming
from two different locations, because of their which may be due to the elemental variation

between the two types of soil and we have validated the results using scanning electron



microscopy as well as using the same EDS technology. And also, so we have proved the
usefulness of the PXRF and diffuse reflectance spectroscopy method for prediction of soil

salinity.
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+ Publication: Aldabaa, A.A.A., D.C. Weindorf, S. Chakraborty, A. Sharma,
and B. Li. 2015. Combination of proximal and remote sensing methods for
rapid sail salinity quantification. Geoderma 239-240:34-46.

So, if you can see that results, where we are using the PXRF alone, we are getting an r square
validation, r square value of point r square, validation r square values of 0.71. And when we
are using the diffuse reflectance spectroscopy alone, we are getting 0.90 when also when we
are combining the PXRF plus DRS although we are getting the similar 0.90 r square, but if
you compare the RPD values, RPD stands for residual prediction deviation, which is

basically the standard deviation minus RMSE of the model.

So, if you see specifically, we calculate this for validation samples. So, the validation
standard deviation by the RMSE we get the RPD value. So, according to Chang et al if we get
the RPD values of less than 1.4 that shows poor model performance, if the RPD values lies
between 1.4 to 2 that shows fair model performance and if it is more than 2 that shows good

and reliable model performance.

You can see that when we are combining the PXRF and DRS data, we are getting 3.17 which
is highest among all these three models. The model which I showed you the SVR model,
which is showing the r square values of 0.95 that is basically when we are combining PXRF
DRS and also the remote sensing data and this is basically a combination of PXRF and DRS
data. So, you can see that when we are combining the PXRF and DRS data, we are getting

high RPD values, which shows the importance of the model fusion or sensor fusion.
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So, also in subsequent research, we try to model the total carbon and total nitrogen, these two
are important soil parameters by combined diffuse reflectance spectroscopy and PXRF
model. So, these two properties were modelled using 675 soil samples collected from Texas,
Nebraska, California, of United States. And we have seen that the combined PXRF and DRS

model where status were better, then using these PXRF and DRS individually or in isolation.

So, that shows the again the importance of PXRF as well as DRS combination through sensor
fusion. And it was also published in a very good journal called Geoderma. You can see here
the total carbon was, and both total carbon and total nitrogen were predicted using the
combined DRS and PXRF using two models. One is random forest and other is penalized

spline regression.

We will discuss this penalized spline regression in our upcoming lectures, which is a spline-
based regression we will discuss this, but remember that in this research, we have found that
when we combine the PXRF and DRS data together, we can get better results than using the
individual sensor alone. So, that shows the importance of sensor fusion or multi sensor fusion

for producing the better soil prediction.
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Duda etal. (2017)

Now, another research we executed in 2017 and it was also published in Geoderma. Here also
we try to predict the total carbon and total nitrogen using combine diffuse reflectance
spectroscopy and PXRF. And we have found that when we combine these diffuse reflectance
spectroscopy and PXRF together, we got better model accuracy then predicting the total
carbon and total nitrogen using individual sensors. We compared their RPIQ, RPD, RMSE,
which are performance matrix and we have seen that combined model produce always better

results than using the sensors in isolation.
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So, you not only we have produced we have showed the importance of combined model but

also at the same time, we produce the prediction map through kringing. So, these are the four



different maps you can see, total carbon, total nitrogen, then clay and loss on ignition, organic
carbon. So, these maps were used, these maps were produced by combining these PXRF and

plus DRS model, fused model and interpreted through Kriging interpolation.

So, if you can see that, the variation of nitrogen in this zone, so that shows that high content
of nitrogen was found in this patch and we have seen that this is due to the presence of a pile
of manure, so that shows that this combination of PXRF and DRS realistically identified
these higher nutrient concentration in the proper space. So, that shows that not only this
synthesized or fused model can produce better prediction accuracy, but at the same time it

can produce better mapping of soil properties.
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Subsequently in another research, we tried to model the total carbon and total nitrogen. And
here, instead of simple concatenating the data simple and merging the data, we have used
another strategy for model fusion. As you can see here, here first we started with the total
carbon and total nitrogen these were our response values or target values. So, in first instance
our input was spectral data coming from DRS and using the spectral data we fit the model

using penalized regression, partial least squares regression and elastic net regression.

So, we tried and compared three different models and then we predicted the total carbon and
total nitrogen. Obviously, for any model there will be some residuals. So, the subsequently
the residuals from all these three models were predicted or modelled using the PXRF data.
So, simultaneously we are getting the predicted results from both these PSR or PLS or ENET

model using the spectral data.



And also, simultaneously we are getting the prediction from this random forest model using
the PXRF data. If we add then the final predicted values will be basically a combination of
this component and this component. So, this is another way of fusing model and this new
novel strategy was also used for predicting the total carbon and total nitrogen by Cardelli et al
in 2017. And we have proved that using this strategy also, we can see that we can produce

better model accuracy that using these individual sensors alone.
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So, there are several other attributes also, which can be predicted using this sensor fusion
approach. These are total nitrous and total carbon, I have already showed you then loss on
ignition, soil organic matter, clay contents, sand content all of these attributes have showed

good results and supported the use of sensor fusion for their better prediction accuracy.
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Another application we have tried is to predict the petroleum hydrocarbon. So, you can see
that these petroleum pump jacks or the petroleum extraction process sometime contaminate
the surrounding fields. So, this is a picture taken in a cotton field of Texas and we can see
that this crude oil which are being extracted from the soil sometimes get spilled away and

contaminate the surrounding land.

So, this petroleum contaminated soils should be predicted using some sense, using some
advanced sensing methods. So, we tried to use this combined sensor method also to predict
these petroleum hydrocarbon contamination. So, in this case, our response was longer than
we converted this total petroleum hydrocarbon and we model it using the spectral data. So,
you can see here we tried to model this logarithmic log converted the total petroleum

hydrocarbon using the spectral data using penalized spline regression model.

And then, the residuals were further predicted using either random forest or linear regression
model using PXRF data. So, we got Y PSR or we got Y RF or Y linear model regression,
which had the predicted values and then the final predicted values is basically the
combination of these two terms. We have seen that when we combine these two dataset, we
combine these two dataset by using these model fusion technology, then we can get higher

prediction accuracy.
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As you can see from these results, when we are combining these penalized spline regression
and random forest not only, we are getting the highest r square, but also, we are getting the
highest RPD values among all the models, where we have tried these, either we have tried
these individual DRS or other models, like PLS, PSR or linear regression combination. So,
we have found that not only the sensor fusion is important, but also combination of model is

also very important for producing the better results.
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We have also seen that it is possible to segregate the soil samples or crude oil contaminated
samples. So, here you can see that these green points are showing heavy crude oil

contaminated sample, these red points are showing these control samples which are non-



contaminated and these blue circles are showing the crude oils contaminated samples, it is

possible to segregate the samples based on their contamination level.
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So, so far guys we have talked about the combined sensor platform. And also, we have talked
about the model fusion. So, we move from there and also try to use the portable XRF for
plant elemental characterization, you know that plant has different parts and different parts
can accumulate different elements. So, the elemental content in the plant is also very
important and generally we measured them in the lab after total digestion process which
involves caustic chemicals like acids and also digestion process which is very hazardous

which is very much exothermic.

So, to replace or to supplement those hazardous time consuming and corrosive chemical
intensive elemental concentration measurement in plant bodies, we also use the portable XRF
for predicting the elemental content, we have used different plant parts. And we have seen
that PXRF is very much helpful for predicting accurate elemental content. So, we got very
high correlation between the PXRF elemental content as well as the total elemental content

which we get from the traditional methods.

So, that shows that this PXRF cannot be only used for soil, but also it can be used for other
matrices like plant matrices. So, but at the same time, it is also advisable that since the
commercially available PXRF are only having a limited number of internal calibrations
focusing on geochemistry soil, it is important to expand this library for other matrices also

like plant because it depends on metrics density.



So, since the plant metrics density is different than soil metric density, we need to develop
individual and separate prediction model for plant materials and plant elements also and we

should incorporate that calibration within our next generation of PXRF.
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And other sensor fusion technology we have tried that is called model averaging. And in this

model averaging you can see we try to use different models. For example, here you can see
that a whole dataset is segregated into calibration set and validation set and using the
calibration set. Suppose, we fitted this lasso regression, we will be discussing this lasso

regression in our upcoming lectures.

Remember that this DRS spectra was used to predict the pH, EC and organic carbon of the
soil using the lasso regression. The Nix which we are going to discuss, Nix is the colour
sensor. So, Nix indices colour indices are also being used for predicting these same
parameters using random forest model and PXRF elements were also used for predicting the
pH, EC and mostly using random forest model. So, for all these three models, we can get the

predicted values for this calibration set.

So, predictor 1, predictor 2 and predictor 3 or predictor set 1, predictor set 2 and predictor set
3. So, all these were combined to use the final model through ridge regression, we are also
going to discuss this ridge regression in our upcoming lectures. So, these predicted
calibration samples are our predicted values of the calibration samples were used as predictor
sets for and then they were subsequently combined to produce the final prediction model
through ridge regression. And that model was validated using the validation set. So, this is

called model averaging.



This model averaging has been used in other literature in other applications also, some soil
scientists have used different versions of model averaging like Granger and Ramanathan
model averaging method they have tried for combination of PXRF as well as DRS data. So,
there are different approaches for combination of dataset, remember, it depends upon your
particular application, sometimes you will see that simple concatenating or simple merging of
these two dataset is better and sometimes you have to use these either model averaging or

these model fusion strategies for getting the better results.

And there is no universal best model, you have to develop this model and you have to try
different combinations that you have to you have to try different types of model to see which

one works better with your dataset. And then you have to select that for subsequent analysis.
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We have also seen that PXRF can be also, as I have told you that PXRF can be used for
elemental content analysis in the vegetation, we have extensively used these for heavy metal
content identification, heavy metal identification in tea leaves, and based on this elemental
content of these tea leaves, we try to classify these tea leaves using different types of

classification schemes.
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So, another sensor we have used is Nix Pro Colour Sensor or Nix Colour Sensor, which is an
inexpensive colour sensor. Remember this is a very recently used colour sensor for soil and
soil colour is defined by using the Munsell soil colour chart, which is qualitative definition.
So, these Nix probe gives you the quantitative results in terms of different types of colour

models like RGB, CMYK, CLAB, LCH and so on.

So, it is a, Nix Pro is an inexpensive colour sensor, it is relatively cheap, add it is
rechargeable, and portable. It has its own LED light source. It can connect to the smartphone
and operated through smartphone via Bluetooth and smartphone Android app and iOS app

and then it is very small and also very lightweight also, only 43 grams.

So, this sensor has been used for last 4 to 5 years in different domains of soil and we are
going to discuss that, but remember that this is now, this sensor has become an important
topic of discussion among the soil scientist. Nowadays, for better prediction of several soil
properties. We are going to discuss the application of Nix Pro Colour Sensor or Nix Colour

Sensor in our upcoming slides.
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+ Wang, D, S, Chakraborty, D.C. Weindorf, B. Li, A, Sharma, S. Paul, and N, Ali. 2015, Synthesized Use of VisNIR DRS and PXRF for soil
characterization: Total carbon and total nitrogen. Geoderma 243-244:157-167.

So, guys, let us finish this wrap up this lecture here. These are the references for this lecture.
And in our next lecture we are going to talk more about the Nix Colour Sensor and their
application. And we will be seeing how Nix can be also combined with other sensor to
produce better results and how the other sensors, crop sensors can be used along with
machine learning tools for predicting different types of crop properties. So, let us wrap up

this lecture here. Thank you and let us meet in our last lecture of week 6.



