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So, good morning in the earlier class last class we had finished it up to that conduction

heat  transfer through a slab One Dimensional  Steady State  with say constant  energy

generation and constant conductivity. So, we came to the solution after integration of

both the of the differential equation by integrating twice we got two constants C1 and C2

and we were supposed to solved for C1 and C2, ‘right’. 

But, we also said to solve the two bound, two constants, C1 and C2 we need to have 2

boundary conditions, which can be any one of prescribed heat flux boundary, prescribe

temperature  boundary,  or  prescribed  convective  boundary.  Any  one  of  these  or  in

combination we need two boundaries to solve them, ‘right’. So, now, let us do a problem

and solve that ok. So, it is like that in this is one dimensional steady state heat conduction

continuation in lecture number 9, we come to this that the problem is defined like this.
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A  solid  slab  having  constant  thermal  conductivity  of  thickness  L  is  maintained  at

constant, but different temperatures T1 and T2, at the boundary surfaces at x =0 and x=L

respectively.  There  is  no heat  generation  in  the slab.  What  is  the expression for  the



temperature distribution T(x) in the slab? And, develop an expression for heat flow Q

through an area A of the slab. 

I repeat, the problem is like this a solid slab having constant thermal conductivity of

thickness L is maintained at constant, but different temperatures T1 and T2; that means,

both the sides one side T1 and another side T2 at the boundary surfaces at x =0 and x= L

respectively.  There  is  no heat  generation  in  the slab.  What  is  the expression for  the

temperature distribution T(x)? You remember we came to the solution that T(x) is equal

to this plus C1 and C2 this was our solution. 

So, C1 and C2 was not evaluated, because boundaries were not given, but now our two

boundaries  are  given  one  is  prescribed  temperature  boundary  and  another  is  also

prescribed temperature boundary, that is boundary surfaces is at T1 at x =0 and TL at

x=L, ‘right’. As, then we have we have to find out that temperature distribution T(x) in

the slab as well we have to also find out the expression for the heat flow Q through an

area A of the slab, ‘right’. So, we start with that now here what do we have? We have the

our situation is steady state; that means, the, ‘right’ side is 0, then we have no internal

energy generation, because it is not specified unless it is specified, we can assume that no

internal at energy generation. Because at there been internal energy generation or internal

heat generation, then it would have been specified since it is not specified we can assume

that  there is  no generation of heat  number 2 and number 3 is  that  conductivity  k is

constant, ‘right’.

In that case if all these three are true, then we can write the generalized equation from

that for the slab 

The reason being it is a steady state, there is no energy generation and the conductivity is

constant, then we have written like this, ‘right’. Now, we let us go into it is solution.
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The solution of it can be written that on integration we can write, first integration T(x) is

equal to something this is, ‘right’ and this is C1x and then T(x) is equal to C1x + C2,

‘right’.  So,  if  that be true,  then we can because first  one came as the integration  of

d2T(x)/dx2, it became dt/dx is equal to constant C1 and next integration it came T(x) is

equal to C1x plus C2, ‘right’.

And, we are given at x is equal to 0 that is the boundary at x =0, T(x) =T1, ‘right’. If, that

be true at x =0 T(x) =T1, then we can easily write that x =0, ‘right’ that you takes x =0,

T0 is T1, ‘right’. And, then we can write that this x is to 0 means this is 0 and this is T1.

So, C2 is T1 not 0, it should be C2 is T1, ‘right’.

And, at x =L, T(x) =T(2), ‘right’. So, we can write this is C1 is we have now we are

substituting. So, it is C1 we have to find out, so T is Tx is T2; T2 is this equal to this one

becomes C1, C1 L, ‘right’ and this is becoming T1, ‘right’. So, we can write C1 is equal to

this is (T2 -T1)/L is C1, ‘right’ because this is not C2 is equal to 0 this was by mistake it

was written. So, in many cases this may be purposefully made the mistake.

So, that you can identify, because it should it should click you that there is something

wrong in it, ‘right’. So, here I that is why I am explaining that on integration we got T(x)

is C1x + C2 how you got it? We got it from here that d2T(x)/dx2 is 0, on first integration

we got dT(x)/dx equal to C1, ‘right’. And, on second integration T(x) is equal to C1x + C2,

which we wrote in once in one shot, ‘right’.



So, this is on the integration and to solve this two C constant C1 and C2, we need 2

boundaries. 2 boundaries already given T(x) is T1 at x =0 and T(x) is T2 at x =L. So, if

that be true in the first case at x equal to 0, T(x) is T1, so; that means, here it is T1 and x is

0. So, this goes off zone; that means, C2 is T1 not 0, ‘right’ this is T1.

And,  at  x  equal  to  L,  T(x)  is  T2 that  is  the  boundary  given.  So,  we can  write  and

substituting at x is equal to L, so this is C1 L, C2 is T1 and this T(x) has become T2,

‘right’. So, we can write C1 is equal to this (T2 -T1)/L. So, we can substitute C1 and C2

here we get T(x) is equal to (T2 -T1)x/L+C1, ‘right’. 

So, this x by L came because this C1 is (T2 -T1)/L. So, (T2 -T1)x/L+T1 is T(x). So, as you

were said in the problem find out the temperature distribution T(x) in the slab, ‘right’.

So, which we have found out that the C at T(x) that is temperature distribution in the slab

is (T2 -T1)x/L+T1, ‘right’.
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Now, we need to find out q to find out q we need to first differentiate that was on first

differentiation integration we get 
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Now, let  us see another problem, ‘right’. A fluid at a temperature of Te1 with a heat

transfer coefficient h1 flows over the surface at x =0 of a slab of thickness L. Another

fluid at a temperature of Te2 with a heat transfer coefficient h2 flows over the surface of

the slab at x =L. Derive an expression for the heat flow capital Q through an area of A of

the slab. 

And, also calculate the heat flow transfer rate through A is equal to 1 m2 of the slab for

Te1 = 150ºC, Te2=25 ºC, h1=300 W/m2ºC, h2=600 W/m2ºC and L is 5 centimeter and k of

the material is 16 W/mºC, ‘right’.

So, this tells that we have a slab and one side is a convective boundary condition and

another side of this slab is the another convective boundary condition where it is a T1 Te1

or Te1 and this is Te2 with a transfer coefficient of h1 and h2, then we have to find the

solution and the accordingly was the solution is over obtained the problem numeral can

also be solved, ‘right’.

So, a fluid at the temperature of Te1 with a heat transfer coefficient of h1 close over the

surface at x equal to 0 of a slab of thickness L. Another fluid at a temperature T e2 with

the heat transfer coefficient he2 flows over the surface of this slab at x equal to L. Derive

and expression for the heat flow Q through an area A of this slab, also calculate the heat

flow transfer rate through A is equal to 1 meter square of the slab for Te1 is equal to 150



degree centigrade, Te2 is equal to 25 degree centigrade, h1= 300 W/m2ºC, h2= 600 W/

m2ºC, L is equal to 5 centimeter, k is 16 W/mºC. 

So, if you remember in the previous class, we had shown that let me also draw this a

little rate, that we had say this one and we also had say this one and we said that Q is

flowing through this and a resistance over it was there, ‘right’, this was the resistance R,

‘right’. So, and that resistance was equal to L/ Ak, ‘right’. So, now, if we do this solution

on  the  basis  of  thermal  resistance  concept,  if  we  solve  it  on  the  basis  of  thermal

resistance concept, then the solution becomes much easier it is not analytical solution

earlier equation we have done analytical solution.

But, here we can use analytical definitely and that can be having the same answer, but

much more easier because if there is no internal energy generation number 1, number 2

the  conductivity  is  constant,  number 3 it  is  a  steady state.  So,  if  all  these  three  are

prevailing, then the electrical resistance concept or thermal resistance concept we can do,

‘right’.

So, the solution is like that, we shall we use thermal resistance concept, because in this

case there is no internal energy generation. As it appears from the figure that the heat Q

is flown by convection from the fluid to the surface of the slab at x=0, by conduction

through the slab and by convection from the surface at x =L to the fluid 2 for example,

this, ‘right’.
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So,  one side  this  fluid  is  flowing with  a  heat  transfer  coefficient  of  Te1 and  at  heat

transfer  coefficient  of h1,  with a temperature  Te1 of  the fluid coming to this  surface.

Surface temperature is T1 and then it is getting conducted through the material to the

temperature T2 and then getting dissipated through a fluid with heat transfer coefficient

of  h2 at  a  temperature  of  Te2,  ‘right’.  Which  if  we  draw  according  to  the  thermal

resistance, then Q quantity of heat is coming to this place that is here, ‘right’ up to this it

is coming outside. 

And then we have a heat resistance according to the fluid properties that is 1/Ah1 coming

to the point T1 where it is having a metal thermal or material thermal resistance there is

L/kA. So, like this coming to the point this, where another fluid with their resistance

according to the temperature and environment condition that is that is your h that heat

transfer coefficient, it is 1/Ah2. So, this resistance coming to this outer side and the same

Q is going out, ‘right’.

So,  this  is  called  thermal  resistance  concept.  One  resistance  is  here,  ‘right’,  one

resistance is here, another resistance is through this, another resistance is through this

these are the three resistances corresponding to 1/h1, L /kA and 1/Ah2, ‘right’.
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These are the three resistances flowing through the whole system where Q quantity of

heat is flowing, ‘right’.

Now, these three terms if we add by adding the numerators and denominators we get Q is

So, we can get capital Q where, but here we are not finding temperature, because all the

temperatures  are  already  given.  That  ambient  temperature  or  outside  temperature  or

environmental  temperature is  given, then we are also given that ambient  temperature

both side and the surface temperatures are also given.

So, if the temperatures are given then we have to find out the quantity of heat Q flowing

through  them,  ‘right’.  And,  we have  found  out  an  expression  based  on the  thermal

resistance concept Q has become 
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So, from and this quantification which we have seen that quantification can be written as,

if area of the slab is A, the heat transfer rate through the A can be written as the Q is 
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So, which if we substitute the numeral values where this A was given as 1, h1 was given

as 300, h2 was given as 600, and k was given 16 and length was given 0.05, ‘right’. So, 5

centimeter so, 0.05 meter, so we can rewrite that as 1 by 1 into 300 plus 0.05 by 1 into 16

plus 1 by 1 into 600, ‘right’. 

So, these on simplification or calculation comes to be 8.125 into 10 to the power minus 3

watt  per degree centigrade  per watt,  it  is  not watt  per degree centigrade  it  is  degree

centigrade per watt  since it  is  the resistance,  ‘right’  degree centigrade per watt.  You

remember we had said that this resistance equal to that q is equal to delta T by R, ‘right’,

delta T is in centigrade q is watt and this resistance is the delta T is degree centigrade.

So, resistance becomes equal to delta T that is degree centigrade by q that is watt. So,

degree centigrade by watt is the resistance; so, which we have come across as 8.125, 10

to the power minus 3 degree centigrade per watt.

you will also you should also make yourself this solution or calculations, so, that you can

check whether  the number is  correct  or not  because I  may also do some calculative

mistake, but through calculation.

So, you do also yourself this will type your problem and see it is solution, ‘right’. With

this we conclude to this class, next we will go may be a continuation of this slab and

another solution some problem solution also to be done. So, that if you solve more and

more problems, you are much better off or you really understand the principles lying

over it, ‘right’.

Thank you.
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