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Lecture - 08
One Dimensional Conduction Heat Transfer in Cartesian Coordinate ( Contd. )

So,  we  come  back  again  to  One  Dimensional  Conduction  Heat  Transfer.  We  were

developing the generalized  equation.  And we have made generalized  equation  in the

form of    that was equal to 1 by alpha in this equation. So,

now  we  go  to  that  lecture  8  and  that  one  dimensional  conduction  heat  transfer

continuation.

(Refer Slide Time: 01:21)

So, we were in this special cases ‘right’. So, for constant thermal conductivity when we

have taken k constant see this is 1 by alpha

not alpha, because k by rho Cp is alpha.

So, it is 1 by alpha del del T of t, ‘right’ where alpha is that thermal diffusivity in terms

of . So,  thermal  diffusivity  of  the material  in  the unit  of  meter  square per

second; so, from here we can see that had it been not constant thermal conductivity, then

the equation generalized equation would have been      

this would have been the generalized equation. And if we have taken conductivity to be

constant that is k is constant then it has come to this form, ‘right’.
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For steady state conduction with energy sources within the medium, then we can write it

is a steady state. So, del T del r this goes up since this del T del r the rather del T del t

this goes off, because it is steady state; that means, it is independent of time ‘right’ is no

longer time dependent this was unsteady till this point this was unsteady, ‘right’ because

it is time dependent. But, now if it is a steady state conduction heat transfer within the

material there is a energy generation then we can write that equation 

So, this is for steady state without constant thermal conductivity.

Now, for steady state conduction heat transfer with the energy generation within the

body, but thermal conductivity is constant if that be true then 

this is a another special case.

(Refer Slide Time: 04:41)

Third special case could be for steady state heat conduction with no energy generation

that is g is 0 and steady state. So, ‘right’ side is also 0. So,         and for

steady state heat conduction with no energy generation within the medium, with constant

thermal conductivity then you can write         . In most of the cases you deal

with  this  equation  where  if  n  is  0,  then  it  becomes  d/dx  instead  of  r  d/dx  and this

becomes   that  is  in  turn we can write   and that  is  where no energy

generation constant his thermal conductivity and steady state and geometry is rectangular

coordinate system, ‘right’, then it becomes like that, but if it is n is equal to 1. 
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Then it becomes d/dr of rdT/dr is equal to 0 again there is no heat generation and the

steady state and constant conductivity and the geometry is rectangular coordinate system.

If it is spherical coordinate system then your n becomes 2 then it is d d r of r square d T d

r  is  equal  to  0,  where  there  is  no  internal  energy  generation  steady  state  thermal

conductivity is constant and the body is spherical in system spherical coordinate system,

‘right’.

(Refer Slide Time: 06:57)

So,  this  if  this  be  true  then  if  we  go  into  this  three  dimensional  one,  we  are  not

developing it, but three dimensional equations we can write for rectangular system where

the coordinate is x y z and T is a function of x y z, then 

You remember in the previous slide we had written wrongly by typographical mistake it

was alpha del T del t, but it is 1 by alpha del T del t, I said it to be corrected. So, you

please note it.

For cylindrical system where r theta z, ‘right’ and T is a function of r theta z and also

time T, then  And for spherical system where the

coordinate is r theta phi or r phi theta and T is a function of r phi theta and time t, then it

is
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So, we have seen that one dimensional conduction heat transfer basic equation how we

can develop it? And from there we have come to the three dimensional what is the 3

coordinate  system equations,  ‘right’.  Three  dimensional  equations  also  we  have  not

derived, but we have shown how the equations look like, ‘right’.

Then comes when you are solving it, ‘right’, it is a differential equation. So, when you

are solving it you need to have boundary condition, if it is ∂2T/∂x2; that means, you can

or you can get T on double integration, ‘right’ on double integration you can get T. So, to

get T you need to have boundary condition. 

And this  boundary  conditions  are  to  be  also  understood  and  they  are  to  be,  rightly

specified,  ‘right’. So, boundary conditions there are three types, ‘right’; one is called

prescribed  boundary  condition  or  boundary  condition  of  first  kind,  then  prescribed

boundary condition of second type and condition that is boundary condition of second

kind and the third one is boundary condition or prescribed boundary condition of third

type or boundary condition of the third type, ‘right’. 

So, if that be true then, let us take a body as it is shown here in the picture, ‘right’ we

have drawn it that we have two this is two sides. So, our x direction is this. So, other two

dimensions are much bigger than this dimension. So, that is why it is one dimensional,

‘right’. 



So, bound this is called boundary condition of the first kind or prescribed temperature

boundary  condition,  ‘right’,  prescribed  temperature  boundary  condition;  that  means,

boundary condition is defined in terms of temperature, ‘right’. If it is that if the both

boundary means both the sides of the body, if the body is like this. 

So, this side of the body is one temperature boundary condition and this side of the body

is another boundary condition and the body is like this, ‘right’. If this be true which we

have drawn here we can say that T(x,t)|x=0=T1, that is one boundary and the body is two

sides, other two sides infinite or very large compared to the one through which heat is

being conducted and that is the x direction, ‘right’. And this is 0 to L the two sides, one

side x is 0 and the other side x is L, ‘right’. 

So, one boundary can be T(x,t)|x=0 ≡ T(o,t) = T1 and the other side is T2 is equal to T(x,t)|

x=L  ≡ T(L,t) = T2  . So, this is called prescribed boundary condition of first kind or the

prescribed temperature boundary condition.

The plate is subjected to a prescribed boundary condition at both surfaces and can be

written as T(x,t)|x=0 ≡ T(o,t) = T1,  ‘right’. And this is equation number 1 and T(x,t)|x=L ≡

T(L,t) = T2

(Refer Slide Time: 13:45)

This is these are the two boundary equations we got in terms of temperature T1 and T2,

‘right’. So, second type is boundary condition of second kind or called proscribed heat



flux boundary,  ‘right’,  prescribed heat  flux boundary.  So, heat  flux is  what watt  per

meter square, ‘right’, or any flux is that thing per unit time unit area per unit area is that

thing or here it is watt per meter square. So, any flux is that thing it is energy so, Joules

per meter square per second per unit time is the flux.

So, watt that is joules per second per meter square, ‘right’. So, that is the flux. So, here

we are providing prescribed boundary condition of the second kind or prescribed heat

flux boundary condition, ‘right’. If, it is heat flux it is q0 that is watt per meter square or

Joules per second per meter square, ‘right’. Similarly, for the other energy terms maybe

for fluid flow or for mass transfer so, you will see that everywhere flux is there and this

flux is that thing per unit area per unit time is the flux ok. 

So, here it is q0 or watt per meter square that is the heat flux which you are using. And by

the definition of q we have we are we can write that
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 , then what will happen it will transfer from both the sides and the

temperature will go on increasing and it is unsolvable, ‘right’. Whereas, if heat flux is

coming from one side, it has to disappear to the other side with whatever be the flux,

‘right’. 

So,  one is  positive if  it  is  positive,  then the other  side has to be negative or if  it  is

negative  the  other  side  has  to  be  positive.  So,  that  the  heat  can  enter  and also exit

otherwise there will be accumulation and if the accumulation is there; that means, inside

temperature will go on increasing, which is beyond solution or unsolvable by normal this

way yes it can be, but in all other different techniques. So, we can write 
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the surface x equal to 0 and at the surface x equal to L, we can write 
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 , which

we have written here, ‘right’. So, heat supplied by conduction or by flux is (Refer Time:



17:31) 
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 and conditions this is called conduction heat flux. Another one heat

supply where it is watt per meter square 
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 , it is between 0 to L and in the x

direction, ‘right’.

So, when the heat flux is prescribed at a boundary surface, the boundary condition is said

to be of the second kind, ‘right’ the boundary condition is said to be of the second kind.

So, here we have 
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Then the boundary condition of the third kind, i.e., called convective boundary condition,

‘right’. Here also you see we have taken one object which has two boundaries defined

and the other two sides are much bigger compared to this one. So, that is why we can

consider it to be one dimensional, ‘right’. 

So, here there is a convective fluid in one side flowing at the temperature T1 with a heat

transfer  coefficient  of  h1.  So,  this  is  under  convective  condition,  ‘right’.  So,  this

convection is coming to the surface and then this surface is attending your temperature

corresponding to this fluid flow and fluid properties, ‘right’ and which is equivalent to.
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And this convection heat is then conducted through the body, ‘right’ which is 
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  ,‘right’. So, this convection or whatever has come is conducted

and here also this conducted 
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 at x is equal to 0 is being going out through the fluid,

which is at T1 or rather which is at T2 here it is of course, it should be T2, this was T1 h1

this should be T2 h2, because it would be because of cut and paste that error was there.

So, it should be T2 h2, ‘right’ fluid flow we need fluids flowing on the other side T2 h2,

which we have corrected here of course, 
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So, this is called boundary condition of the second third kind or convective boundary

condition.  Now, the situation  is  that  you may have that  all  these three are  different,

‘right’; one is prescribed temperature boundary condition, second is prescribed heat flux

boundary condition, and third one is prescribed convective boundary condition. And all

these three we have shown in both the sides, ‘right’, but it may happen that you have in

one  side  prescribed  temperature  boundary  condition  and  another  side  it  could  be

prescribed heat flux boundary condition or prescribed convective boundary condition,

that may be one situation, two situations or you may also have one side prescribed heat

flux boundary condition and the other side prescribed convective boundary condition.

So, any combination can happen and but these are the generalized boundary conditions.

So,  when  you  will  face  the  actual  problem,  it  may  be  a  combination,  it  may  be

individually like that or a combination of any three, any two of the three, ‘right’. So, that

is further we will look at, ‘right’.
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So, this is what at the surface x equal to L which we have written here at the surface x is

equal to L, we have written that it is equal to     
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 .

(Refer Slide Time: 22:47)

So, one dimensional steady state heat conduction, ‘right’. So, we were discussing we are

taking a typical case for slab, ‘right’. So, if it is for slab, then we have taken this one

dimension, other two dimensions are infinite or much bigger and this is a slab, where one



side is subjected to a prescribed temperature boundary at T1, other side is also at the

prescribed temperature boundary condition of T2, ‘right’ and we have inside Tx, ‘right’. 

So, this inside these a function of T is a function of x and it is 0 to L, ‘right’. This we can

write in 2 ways, one in the one which we have written in terms of methodics or it is at

one dimensional heat conduction or theoretically we can write it this way 

          This is that is equal to 0 this is one equation which we have

seen earlier and the other equation is k x is equal to        So, we

can rewrite this one in the form of Here, we also can write in the form

of this Q heat is coming to this surface where the temperature is T1 and because of this

body there is a resistance equivalent to R equal to L, that is the length over k A where k

is the conductivity of the material and A is the area through which the heat is getting

transferred and it is coming to the other surface at temperature T 2 and the same Q is

going out, ‘right’.

Because, Q cannot be this cannot be created there or when it is a steady state because it is

a  steady  state.  So,  same  Q  will  come  in  and  go  out  of  the  body  ‘right’.  So,  the

temperature was here T1 and the other face the temperature is  T2 ‘right’.  So, we are

taking this solution of this equation that ,‘right’  it  is  not

saying E0 it is E at any x. So, it is 0 and then q x can be written as minus 
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Then first and second integration of this can be written as   this

is the first integration constant. And on second integration we get 

So, to solve it we need two boundaries, ‘right’, two boundary conditions we need one at

x is equal to 0 and the other at x equal to L this is to be provided. And obviously, these

boundary  conditions  can  be  prescribed  temperature,  of  prescribed  heat  flux  or  a

prescribed convective boundary condition, ‘right’.

So, this is one example we have shown, how we can solve this kind of problem that if

you have a slab and if in the slab that q quantity of heat is coming in where the surface is

becoming T u surface temperature is T1. And then the heat is getting conducted through

the material going to the other side at T2 and you are then getting it dissipated that q to

the other side. Corresponding to the resistance of the material, it is R which is equivalent

to L over k and A. So, k is the conductivity of the material and A is the area through

which it is getting transferred, ‘right’. 

So,  we  started  with  you  look  at  we  started  with  that  generalized  equation,  but  the

conditions are a steady state and constant conductivity. So, if it is steady state, ‘right’

side is 0 and internal energy generation is E. So, if conductivity is constant k then our

governing equation becomes that is equal to

            So, we integrated it and our we reformulated that       and if it is

a constant E, then E0 over k and we solved it by integrating first integration we got  

 and in the second integration you got 

So, we need two boundaries to solve it and that can be boundary condition of first kind,

or boundary condition of second kind or boundary condition of third kind, ‘right’. So,

next we will solve it or similar problems, ok.

Thank you.
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