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One Dimensional Conduction Heat Transfer in Cartesian Coordinate

Good morning. So, let us now start the real One Dimensional Heat Transfer, ‘right’. So,

in  this  Thermal  Operations  in  Food  Process  Engineering:  Theory  and  Applications,

‘right’. Here we are now starting with the real course what were outline has been given

that  is  one  dimensional  heat  conduction  or  it  conduction  heat  transfer  in  Cartesian

coordinate, ‘right’. 

As you know that you can have that object may be like a slab or like rectangle or may be

a square or any say those are called under Cartesian coordinate where, you have x y z

this coordinate. But if you have say round, but this is called cylinder so, it be have a

cylindrical, then your coordinates are different cylindrical coordinate or if you have a

spherical object then it is under the sphere, ‘right’, these are objects which have definite

shape and size, ‘right’.

So, here we are taking one dimensional conduction heat why one dimension? Because

out of the three dimensions one dimension is the smallest  compared to the other two

dimensions, ‘right’, other two dimensions are much larger than this smallest dimension

and the conduction heat transfer will take place through that smallest one, ‘right’. Again

here I give you an example at home which you can also see that mummy is having so,

those spheres and other things or you take a piece of iron and put it on the flame, now the

movement you are putting on the flame the other side you can also hold it, ‘right’, say if

this one is that one, ‘right’.



(Refer Slide Time: 02:41)

So, if you are heating here; if you are heating here then if even if it is a metal then you

can hold it for some time, but definitely you cannot hold here at this end because, this is

the smallest dimension. This is the cylindrical body smallest dimension that is the radius

or that diameter compared to the length, ‘right’. 

(Refer Slide Time: 03:15)

Similar things could be say this one so, ‘right’. So, this is the mouse and here you see

this  is  the smallest  dimension compared to  other  this  dimension and this  dimension,



‘right’. So, heat should transfer primarily through this and mostly affected by that, i.e.,

why we are first taking that one dimensional heat conduction, ‘right’. 

(Refer Slide Time: 03:45)

For that let us take; let us take one arbitrary shape as it is here, ‘right’, here we have

taken you see an object which does not have any defined boundary as it is in the slab or

in the square or things like that. So, it is arbitrary shape and where the thickness is delta

x,  ‘right’.  So,  thickness is  only delta  x and one dimensional  heat  conduction we are

proceeding. Governing equations are though net rate of heat gain by the conduction, this

plus rate of energy generation, ‘right’ and this two together is equal to rate of increase of

internal energy, ‘right’.

Rate of increase of internal energy so, these we have given so, notation like I and this is

II, all roman and this is III, ‘right’. So, if that be, this is the governing equation for the

one dimensional heat conduction. Then in this body where we have a thickness of delta x

and heat is being transferred in the x direction so, heat flow is taking place like this

coming to the surface and from the other side of this surface it is going out heat flow out.

So, heat flow in at Aq|x, ‘right’, this is the face x, at the face x and heat flow out is Aq|x+Δx

because the thickness is delta x and this is the x direction. If this is in our mind, ‘right’, if

this body is in our mind and if we know that governing equation, which is saying that in

the net rate of heat gain by conduction plus rate of energy generation if there be any this

must be equal to rate of increase in the internal energy which you we have denoted I, II



and III roman, ‘right’. For the body which we have shown which has the surface area of

A, ‘right’, this surface as an area of A and the other side is also having the area A. So,

area is not a changing parameter, ‘right’, area is fixed here as we have seen as of now

subsequently will see how it is proceeding, ‘right’.

(Refer Slide Time: 06:53)

So, let q be the heat flux at the location x in the positive direction of x, at the surface A

of the volume element that A and ∆x, the volume element is the product of A and ∆x. So,

A ∆x is the volume element, A being the meter square and delta x is the thickness that is

in same meter, ‘right’, if it is in SI. 

The rate of heat flow into the volume element by conduction through the surface A at the

location x is Aq|x, ‘right’. Similarly, the rate of heat flow into the volume element by

conduction through the surface A at the location of x+∆x so, here it is A and here it is

A+∆x. So, it comes Aq|x+Δx.

And net rate of heat gain by the volume element by conduction then is 1 equal to Aq|x – 

Aq|x+Δx this is the net rate of heat gain by the volume element by conduction, ‘right’. Now

assume that there is an internal energy generation of g meter cube, ‘right’, g, rather 

Joules per meter cube, in that case rate of energy generation having a volume element of 

A delta x is that second term II is equivalent to A Δx g, ‘right’. 
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So, if  this  is true then the rate  of increase of internal  energy of the volume element

resulting from the change of the temperature with time is . A∆x is

the volume, ρ is the density, Cp is the specific heat of the substance or material through

which the heat is being transferred, this times  

If this is true where we know that Cp is the specific heat of the material in Joules per

degree  centigrade  if  in  many books it  can be also Joules  per  kg per  Kelvin,  ‘right’,

because when it is Kelvin and degree centigrade per unit then they are same, ‘right’.

But because the difference is that and J/kgºC is the Cp and then g is the energy generation

rate per unit volume it is in watt, Joules per second. So, watt per meter cube and we have

q that is the conduction heat flux in the x direction that is in watt per meter square and t

is the time in second ρ the density of the material in kg per meter cube, ‘right’, then we

can rewrite this governing equation, 
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A q at the position x or at the face x minus A q at the face x plus delta x plus that internal

energy generation is A∆xg, ‘right’; so, I think subsequently this g will be replacing with

e  because  g  does  not  sound  good  because  g  normally  we  know  the  notation  of  g

corresponds to the gravitational force ‘right’. So, that is why maybe subsequently we will

change it  to e,  ‘right’,  here we are not changing because already it  is  there we will

change it subsequently.

This is from the definition of q, ‘right’ ,  t  that we know, ‘right’  from

the definition of q that is the heat, it is proportional to the temperature and inversely

proportional  to  the  distance,  ‘right’  and  that  corresponds  to  equal  to  k  that  is  the

proportionality constant which is known as thermal conductivity. So, minus sign, why is
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it there? Because this minus sign was there as the x is increasing T is decreasing, ‘right’

so, that is what it why minus is there. So,  this is by the definition of heat,

‘right’. 
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Now, for a rectangular coordinate system where the area A does not vary with x, let us

also understand this, ‘right’. Our body was like that this is neither a rectangular shape or

cylindrical shape nor a spherical shape this is a just a body, ‘right’ without any shape,

undefined shape, ‘right’. 

So, now, you are assuming if the heat transfer occurs in the rectangular body, ‘right’,

rectangular body means you have x and y, ‘right’ of course, you will also may have z,

but since you have this defined x and y which is not varying. If it is symmetrical, if it is

not it gradually increasing or tapering things like that if it is symmetrical, then you have

a body whose area is not changing with the distance x, ‘right’. So, that is what here we

are assuming, ‘right’. 

So, for rectangular coordinate system where the area A does not vary with x, in that case

we can write in here it was A is not changing with x. So, A can be made constant, ‘right’.
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                                                                So, this is for rectangular coordinate system,

where A is not a function of x or A does not change with x; A, we can assume to be

constant all over the x, x is the distance through which the heat is propagated, ‘right’. So,

heat is getting transferred through the distance x and area is not changing with A, ‘right’.

Then if we take a cylindrical body so, if this body would have been a cylinder, if this

body would have been a cylindrical, ‘right’ where A is varying with r for a cylindrical

coordinate system where the area A varies with r that this the radial variable, ‘right’. So,

I do not know how to write on it, but let me tell you that see if we come out of it and if

we make a cylinder like this is one, ‘right’, this is another. So, this is the this is another,

this is if this be a cylinder and if this is the axis say if this is the axis, ‘right’, hopefully

this we have to take a little this side, ‘right’ if this is the axis. 

So, r is this one, ‘right’ this is the r; this is the r, ‘right’, if r is this one then this r and if

we copy and paste there and now if we separate them a little like this became copy and

paste here, ‘right’. So, this is the r. So, now, you see as the area which it was 2πrl you

know this area was 2 pi r l. So, as r is increasing your area is also increasing, ‘right’, that

is what we have said and we would like to say here also.

So, we can save it and so, that it is with you and go back to that original. So, where we

are saying that as for a cylindrical coordinate system, where the area A varies, ‘right’

with  r  the  radial  variable  that  r  is  the  radial  variable  we  can  write  since  to  the

here also we can write del T we within bracket r and t that is at any r and

time t, then this plus that g that is the energy generation is equal to , this is

for cylindrical coordinate system, ‘right’. 

For rectangular coordinate system we have seen this, ‘right’ we have divided with A

because A is not a function of x. So, we divided that and we got the
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whereas, for cylindrical coordinate we got it 
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And if it is for spherical coordinate system, then for sphere this area is a function of r

square means as r is increasing area is increased in terms of square of it, ‘right’. So, area

is function of r square and we can say that 

Hence  a  compact  generalized  equation  can  be  written  as  we  can  write  a  compact

generalized is equation as 

So, this is the generalized conduction one dimensional conduction heat transfer equation,

Now, if we put n is equal to 0 which corresponds to rectangular coordinate, then 1 by r to

the power 0 that becomes 1, ‘right’. So, 1 by r to the power 0 is 1. So, 

                                                                  ,

‘right’ so, this is for rectangular coordinate. For n is equal to 1 which is for spherical

coordinate, we can write 

So, this is for the cylindrical coordinate which is true with this one ‘right’ which is true

with this one. Now for the r is equal to 2 we can write 
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this is for spherical coordinate, ‘right’.
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Special cases quickly let us say for constant thermal conductivity where k is constant, 

So, ρCp/k is 1 by α, this is not α; 1/α this is for generalized condition, where alpha is k by

rho Cp or thermal diffusivity in meter square per second, ‘right’.

And next special case is if it is a steady state conduction with energy generate sources in

the medium, then we can write 

And if it is a steady state without any heat generation as well as constant conductivity,

then we can write 
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So, for steady state with no generation within the medium I think our time is over will do

it in the next class will start from here, ‘right’ or we will we have ended up here and will

do that.  

Then for steady state heat conduction in the where no energy generation then we can

write    and for steady state heat conduction with no generation of heat

within the medium with constant thermal conductivity we can write 

where, n is 0 for rectangular coordinate, n is 1 for cylindrical coordinate and n is equal to

2 for spherical coordinate.
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Similarly, we can write for three dimensional equations that 

And for cylindrical that is (r,θ,z), coordinate, where, T ≡ T(r,θ,z,t),  where T is the function

T=f(  r, theta, z) or you can write 

And for spherical system we can write (r,,θ), where, T ≡ T(r,,θ,t)

and,                                                                                                             ,

So, with this let us stop it here, next will come to the boundary conditions or maybe we

give a recapitulate a little and then we will come to the boundary conditions, ‘right’

Thank you.
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