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Lecture - 49
Heat Exchangers (Contd.)

So, we are coming now to the Heat Exchangers more or less to the end part, it is not

maybe some few more classes will be required because if you are able to handle heat

exchangers and problems associated with that, then I hope you can handle heat transfer

very efficiently, ‘right’.

So, now we are coming to that lecture number 49, that is heat exchanger continuation,

‘right’.

(Refer Slide Time: 01:10)

So, here also let us do a problem, this is a different problem than what you normally

come across that is why I thought let me share with you also. The problem is like this.

The temperature distribution across a large concrete slab just now we gave definition in

the previous class. We gave that cold store or R22 things like that we had given.

So, that is why that if you see a cold store so, that is having a concrete, ‘right’ and then

some insulation ‘right’ and then some barrier that is vapour barrier etcetera, ‘right’. So,

their concrete is also one of the vital thing. So, that is why I thought let it be also be



taken care of or let it also be tried with. That the temperature distribution across a large

concrete slab of 500 mm thick. So, that slab is 500 mm thick that is 50 cm, ‘right’, 500

mm means 50 cm means 0.5 m, ‘right’. So, half of a meter is thick. So, really it has to be

because they are normally equal storages are 4-5 story.

So, if it is not well constructed then there may be a chance of collapse that is why they

are well. I mean you know from the civil engineering point of view well done; however,

our problem is not civil engineering our problem is heat transfer. So, let us look into that.

The  temperature  distribution  across  a  large  concrete  slab  of  500  mm  thick  of  a

commercial  cold  store  is  subjected  to  high  outside  temperature  from  one  side  as

measured by thermocouples approximating to the following relation. That is T = 120 -

100x + 24x2 + 40x3 - 30x4, ‘right’.

(Refer Slide Time: 04:06)

I repeat, at the end will repeat where T is in °C and x is in m, ‘right’. So, this was the

concrete which was this length as thickness is 50 cm, ‘right’ or 0.5 m, ‘right’ and in this

that the temperature distribution is like this, 120 - 100x + 24x2 + 40x3 - 30x4, where T is

in centigrade and x that x is this as you are progressing this is having a temperature

outside and this is a temperature inside. So, that this temperature distribution which we

have said is a function of x where x is the distance from the end, ‘right’.



(Refer Slide Time: 05:15)

So, if these be true, then considering an area of 5 m2, calculate the heat number i: the heat

entering and leaving the slab,  ‘right’. So, this was the slab number i,  find out the Q

entering and Q leaving the slab ‘right’. So, this is if it is entering and this is exiting or

this can be simply written Qi and this is Qo that is much better, ‘right’ Q inlet and Q

outlet, ‘right’, the heat entering and leaving the slab in unit time per unit time or second,

‘right’.

(Refer Slide Time: 06:05)



So, that is i. Number ii: the heat energy stored in unit time again what is the Q that has

been stored that is Qi - Qo should be, ‘right’ how much Q has been stored should be

whatever has come and whatever has left the difference should be the stored amount per

unit time since the earlier one was also per unit time and this one is also per unit time.

Third the rate of temperature change at both sides of the slab.

(Refer Slide Time: 06:46)

Again we have that 50 or 0.5 m slab, ‘right’, the rate of temperature change at both side

of the slab. So, what is the rate of temperature change at this end and what is the rate of

temperature change at this end of the slab that is also to be determined. And number iv:

the  point  where  the rate  of  heating  or  cooling  is  maximum,  ‘right’.  So,  this  is  both

heating  or  cooling  is  maximum,  ‘right’.  So  that  means,  here  also  that  maximum

minimum concept will come into, ‘right’.

So, some derivative is equal to 0 that is for the maximum or minimum. So, fourth one is

that. Given the properties of the concrete like this k, conductivity of the concrete material

is 1.2 W/m.°C, alpha that is thermal diffusivity is 1.77×10-3 m2/h this is m2/h, ‘right’.



(Refer Slide Time: 08:10)

Normally α is in m2/s or thermal diffusivity is m2/s, when the moment it is like that the

value will be somewhere high. So, that is why it is m2/h; 1.77 × 10-3 m2/h, ‘right’. So, to

do the problem as we normally do that we repeat the problem so that understanding

becomes clear.

The  temperature  distribution  across  a  large  concrete  slab  of  500  mm  thick  of  a

commercial  cold  store  is  subjected  to  high  outside  temperature  from  one  side  as

measured by thermo couples approximating to the following relation, T = 120 - 100x +

24x2 + 40x3 - 30x4, where T is in centigrade and x is in meter.

Considering an area of 5 m2 area, calculate an area of 5 m2 calculate number i, the heat

entering and leaving the slab in unit time, number ii, the heat energy stored in unit time,

number iii, the rate of temperature change at both sides of this slab and number iv, the

point where the rate of heating or cooling is maximum given the properties of concrete as

follows  that  k  conductivity  of  the  concrete  material  is  1.2  per  m/°C  and  thermal

diffusivity of the concrete material is 1.77 × 10-3 m2/h, ‘right’. So, this we have to do.
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Now, to do that, first let us see we have been given this unit that T = 120 minus dot dot

dot dot this thing, ‘right’. So, write first this one. Now the moment you write it, so, T is

we can write T is a function of x, ‘right’.

(Refer Slide Time: 10:38)

If T is a function of x then we can easily differentiate it as dT dx ‘right’. So, that is what

we have done. What is the dT/dx of this? dT/dx of this is this one is constant. So, not

there,  so, this is minus 100 x. So, minus 100, this is +24 x2. So, 2 × 24x, this is on

differentiation, this is 40x3 so, plus 3 x3. So, 3 × 40 x2, ‘right’ - 30 x4; so, -4 ×30 × x3. 



So, dT/dx is this -100 + 2 × 24 x  +  3 ×  40 x2 - 4 ×  30 x3 which on simplification can be

written as -100 + 48 x + 120 x2 - 120 x3 this is dT dx. So, dT dx is this first derivative,

‘right’. So, what will be the second derivative? That is d2T/dx2.

(Refer Slide Time: 12:04)

Second derivative will be again d dx(dT/dx), ‘right’ ddx of dT/dx is your d2T/dx2 or

second derivative. So, if we again differentiate with respect to x the dT/dx, then we get

that. So, this is to be again differentiated. Again if we differentiate first this term goes

off, ‘right’. So, here it is 2 × 24 that comes directly, here it is 3 × 40 or 120 × 2 2 × 120

x, ‘right’ and this term it is 3 × 120 that is this.
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So, we can write d2T/dx2 is 48 + 2 × 120 x - 3 × 120 x2 that can be written which is not

visible here, but that can be written simply as 48 plus this is 120 × 2 that is 240 x, ‘right’

minus this is -3 ×120; that means, 360 x2 is the simplification form of this ‘right’. 48 +

240 x - 360 x which is written here, ‘right’ which is not visible for some reason beyond

me, ok.

(Refer Slide Time: 14:00)

So, I repeat that we have d2T/dx2 on simplification is equal to 48 + 120 x - 360 x2, ‘right’

that is the second derivative, ‘right’.
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Now, if  we have this,  then we can write  heating heat  entering the  slab,  ‘right’  heat

entering the slab that was our first question. So, heat entering the slab that can be written.

So, qo  if it is -kA dT/dx at x = 0 instead of 0.5, it should be written x is equal to because

both the sense, ‘right’. So, one end x = 0 and other end x = 0.5, ‘right’ that is logical,

‘right’.

(Refer Slide Time: 15:08)

So, at x = 0 they should be x = 0 we write our expression was -1.2, ‘right’ into the again

we again we made that mistake, that mistake is here you see it is α is one point not 2,



1.77 oh k is 1.2, ‘right’ k is 1.2 and α is 1.77 10 to the minus 3. So, when you are doing it

with your calculator, please look into the corrections that this is x = 0 and our dT/dx -

kA. So, we have -1.2 that is k, A was 5, ‘right’ and dT/dx first thing which came up is

this which came up was minus 100 + 2 × 24 that is plus 48 x + and 120 x2 - 120 x3,

‘right’.

So, this was our this thing dT/dx.

(Refer Slide Time: 16:46)

So, dT/dx at x = 0, this was that this is –kA, ‘right’. So, if we take this should have been

this actually should have been -100 into this is 0 this is 0 this is 0, ‘right’. So, 1.2 × 5,

‘right’ 1.2 × 5 is how much? 60, ‘right’, 1.2 × 5 is 6, ‘right’ and this minus and this

minus made it 100. So, it is 600. So, 600 watt actually q at x = 0; the same both the

things are this and that are identical, somehow it got over overwritten, ‘right’.
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So, q at x = 0 you put all in this expression everywhere 0 x is 0 x is 0 then only minus

100 remains.

So, -1.2 × 5 is 6 times 100 = 600 W, ‘right’. So, q is 0 is 600 W ‘right’ similarly q o  at x

= -0.5, x equal 0.5 is -kA dT dx. So, now, here we are writing that here we are writing -

1.2 × 5,  ‘right’  into -100 + 48 × 0.5 + 120×0.52 -120 × 0.53,  ‘right’.  So,  this  if  we

calculate then it comes this side is - 6 and this side after simplification becomes - 61.

So, total is this minus and this minus goes off. So, 6 × 61 is 366, what happen? When we

have I have we have done I have done it.  So,  perhaps these also got super imposed

unfortunately, ‘right’. So, please correct it. This is x = 0 you put in all the x as 0, ‘right’.

Then you have only 100 ×6. So, it becomes 600 W at x = 0 and this should be q0.5,

‘right’, q0.5 and -k A x = 0.5 that comes 366 W, ‘right’. So, second part is over, third part

is the heat energy stored in unit time, ‘right’ heat energy stored in unit time.
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So, all where this watt means Joules per second ‘right’ this watt means J/s, ‘right’. So, if

we have qo – q0.5 then that is what is or this could have been written which I said q in and

this could have been written q out, ‘right’. So, qin - qout is the total heat which is going

out. So, it is 600 was in 366 was out. So, it is 234 W, ‘right’ so; that means, 234 J/s per

unit time, ‘right’.

(Refer Slide Time: 21:11)

Actually it should have been written 234 J because we are already asked per unit time.



So, 234 J, ‘right’ per unit time. So, that is the net or the energy heat energy stored in unit

time, ‘right’. Now the fourth one which is left this was the second, now the third one that

is the rate of temperature change at both sides of this slab, ‘right’.

(Refer Slide Time: 21:48)

So, rate of temperature change at both sides of this slab, this was our slab, what is the

rate of temperature change T that is d rate; that means, with respect to time.

So, dT/dt what is the value of dT/dt at x = 0 and dT/dt at x = 0.5, ‘right’.

(Refer Slide Time: 22:22)



So, if this is to be done then we are finding out dT/dt at x = 0 and dT/dt at x = 0.5. So,

how much is the value that we have to find out.

(Refer Slide Time: 22:41)

So, let us look into that and we see that dT dt is nothing but α d2T/dx2, ‘right’ dT/dt that

is d temperature with α time is α d2T/dx2.

So, that you can write α 1.77×10-3, already we have found out d2T dx2 = 48 + 240 x – 360

x2 this is the general expression. So, we can write dT/ dt that is d with of temperature

with time that is the differential of temperature with time at x = 0 is 1.77 × 10 -3 and since

x = 0 here you have done so, correctly and x = 0. So, it comes only 48.

So, 48 × 177 1.77 × 10-3 is 0.085 °C/h. So, that is dT/dt at x = 0. Similarly dT/dt at x =

0.5, we can write it is 1.77 × 10-3 times now instead of x you write 0.5; so, 48 + 240× 0.5

- 360 × 0.52. So, this on simplification comes to 0.14 °C/h, ‘right’.

So, it was 0.085 °C/h and this is 0.14 °C/h.
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Now, we have still one more to do and that is the point where the rate of heating or

cooling is maximum and that is what is the value of x you have to find out which means

that  ddx of dT/dt that  should be 0, where it  is  either that  it  is maximum to become

maximum the change of dT/dt that is the change of rate of change of temperature with

respect to x that must be equal to 0, then only this can become maximum, ‘right’. 

So, we can write that ddx of α d2T/dx2 because dT/dt we have seen it is nothing but α

d2T/ dx2. So, that is equal to 0, ‘right’. So, this we can rewrite, ‘right’, we can rewrite that

d3T this is, ‘right’ this we can write d3T/dx3 because α goes out, ‘right’.

d3T dx3 is 0, ‘right’ and this value we have already seen that was 240 - 2 × 360 x that was

equal to 0, ‘right’.  So, we can write x = 240 / 720 that is 0.33 m. I hope you have

understood that how we have done, ‘right’ because we are asked that where is the value

where it will be maximum to become maximum, the change of temperature with respect

to time if it is further differentiated with respect to x, then it becomes d dx / dT dt and

when it becomes ddx of dT/dt, dT/dt value we know is α a d2T dx2, ‘right’ since we are

again making it with respect to x.

So, it becomes d2T/d3T d3T/dx3 because α goes out because we are differentiating that is

why and then d3T/dx3 is 0 and now we are substituting that value that is 240 - 2 × 360 x

that from that earlier expression is 0 and that is how we got x = 240/ 720 or 0.33, ‘right’.

This is how this problem can be done and it is a problem which is not normally we come



across that is why I like to put this problem before you. So, that a new type of thing

which obviously, this is based on mathematics nothing more and mathematics which we

have done, ‘right’.

Thank you.


