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Lecture - 42
Condensation (Contd.)

Good morning. So, in that Condensation class, the last class we had come to the point

that dv dy was (ρl - ρv) / (δ – y) and that expression, ‘right’. And we will start from there

ok. So, this  is our condensation continued class and lecture number 42, this  is sorry

lecture number 42, ‘right’, which we can underline like this, ok.

(Refer Slide Time: 01:04)

So, in lecture number 42, we will start  with that the expression which we had given

earlier as this, ‘right’ which we had given earlier as this that dv dy is g × (ρ l - ρv) /µl × (δ-

y).
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Start from there of course, the individual terms we know new term came up with that is

the δ is the thickness of the condensate layer at the position x at any position if you

remember we said that this was wall and this was the flow of the condensate, ‘right’ at

any position x, ‘right’, this is the x and y direction, this is y, this is x. So, at any position

x, ‘right’, the thickness is δ that is what we are saying the thickness is δ. And µ is the

viscosity  of  the  liquid  and  subscripts  l  and  v  refers  to  liquid  and  vapor  phase

respectively, ‘right’.

So, and we are assuming in the case of zero shear stress, ‘right’ that is τ = 0, in the case

of  zero shear  stress  at  the liquid vapor  interface,  what  is  the liquid  vapor  interface?

Liquid vapor interface is this, ‘right’, this is that because this side it is vapor, this is

liquid which is coming in contact with this cold surface, ‘right’. So, this is vapor. 

So, at this liquid vapor interface say at x, so we can take it here, ‘right’. So, at the liquid

vapor interface like if we take that shear stress is zero, ‘right’ and this is assumed to be a

stationary. So, we are assuming in this case that zero shear stress at the liquid vapor

interface because vapor is assumed to be stationary at that point or as such. At the wall

surface liquid velocity is zero, so, v is 0 again this is the wall, ‘right’ this was our fluid or

the condensate.
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So, the liquid which is at the wall so we normally say that it is clinging to the surface

clinging it is clinging to the surface, ‘right’ attached fully, ‘right’. It is now allowing to

move, so that is what we call clinging to the surface, ‘right’. So, if that be true, then the

velocity v is 0 at y is 0, which one is y? 

Again the wall so this was the fluid or condensate and we said this was x-direction this

was y-direction. So, y is 0 is this, ‘right’. So, v is 0 at y is 0, then that equation which just

now we had shown that equation which just now we had shown, ‘right’ like this one that

dv/dy g (ρl -  ρv) / µl × (δ – y).  

So, if we look at this equation, if we integrate that equation/ ‘right’ with the boundary

condition that boundary condition is what v = 0 at y = 0, then the velocity distribution in

the condensate that can be written as v(y) = g (ρl -  ρv) / µl ×(δy – (y2 / 2)), ‘right’.
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From there we can say that the equation which we had, it was dv dy and it was (ρ l -  ρv),

‘right’  over µl,  ‘right’  into δ × g, ‘right’  times (δ – y), ‘right’,  (δ – y), this  was our

expression, ‘right’. So, when we integrated this, ‘right’, when we integrated this we have

integration constant c, ‘right’ and the value of the integration constant and subsequently

using that we get the velocity distribution v(y) is g (ρ l -  ρv)/ µl ×(δy – (y2 / 2)), ‘right’,

because it was dv/dy.
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So, dy was integrated. So, this side it would have been y2 / 2 that is what is coming,

‘right’. And this is nothing, but; this is nothing but expression for a parabolic flow of the

fluid. So, v (y) is a parabolic in nature and that is how it is coming like this, ‘right’. So;

the mass flow rate of the condensate m(x) through any axial position x per unit depth of

the plate that can be written as. 
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This can be written as m (x) = 0 to δ m (x) = 0 to δ ρ l v dy ‘right’ 0 to δ ρl v dy, ‘right’,

which we can rewrite is equal to 0 to δ ρl v already got in this form g × (ρl – ρv) / µl into

(δ y – (y2/2)) × dy, ‘right’. So, dy was there, v we substituted, ρ l we take took and this is

between 0 to l integration, ‘right’. 

So, it is a definite integral and we get m(x) = g ρl × (ρl – ρv) × δ3 / 3 µl which we turn to

with the equation m, ‘right’. So, we got the expression m (x) for in terms of δ and rho’s

in terms of del rho’s and g we got the expression for m (x).
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At  the  wall  for  area  dx  times  1  at  the  wall  for  the  area  dx  times  1  m2,  the  linear

temperature distribution is assumed and the heat transfer becomes, because we have said

that dx times 1 that is the wall area, ‘right’. So, this was wall and this is x and the other

side this side is taken unity, ‘right’. So, that means we can say that this unit is like that. 

And here we say that in this area, the linear temperature distribution is assumed and the

heat transfer then we can write qx = -k dx × 1 that is the area dT dy at the position y = 0,

‘right’. So, this we can rewrite that this is kl kl dx × (Tsaturation - Tw) / δ this dT dy is Tsaturation

at the point y = 0. I repeat where the point y = 0 is this point, ‘right’. 

So, there we are saying that this is Tsaturation dT means (Tsaturation - Tw) since y is 0. So, we

can write here it is equal to δ, ‘right’. And since it would have been Tw - Tsaturation, but with

the negative, so (Tsaturation - Tw), ‘right’, so it is kl dx (Tsaturation - Tw) / δ.

In a dx distance that is vertical this was our x direction so in a dx distance the rate of heat

transferred is qx. Also, in this dx distance the increase in mass from the condensation is

dm, ‘right’, because we saw that this curve was like that. So, whatever mass was here

mass is more at this place and mass is more at this place, so it is gradually changing,

‘right’. So, we are saying in a dx distance, the rate of heat transfer qx. Also, in this dx

distance, the increase in mass from the condensation is dm, ‘right’.



So, earlier equation which we wrote as m we can rewrite that dm is equal to d of m; m is

g × ρl × (ρl - ρv) × δ3 / 3 µl, ‘right’. So, this we can write that g (ρl - ρv) into since it is d of

that d dm of this, then this becomes δ2 d δ / µl, ‘right’, differentiating d with δ is a δ if we

differentiate it becomes δ2 d δ, on integration this gives δ3 ‘right’. So, this is δ2 d δ is dm,

‘right’. So, again we got equation which we need to integrate, ‘right’.
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Where, dm is the representation of the rate of condensation over the distance dx per unit

depth  of  the  plate,  ‘right’,  again  unit  depth  is  that  third  dimension  which  you  are

referring to. So, this is y and this is that third dimension is unit, this is x, ‘right’, so that

we are referring to. 

Since  the  condensate  b  thickness  since  the  condensate  thickness  not  b,  since  the

condensate thickness increases by d δ over the differential length of dx, the rate of heat

released dQ associated with the rate of condensation dm is dQ equal to h f  g into dm,

‘right’. This we write with the equation H. Of course, hf g has to be said where hf g is the

latent heat of condensation, ‘right’ this we have we also used in the previous class hf g for

latent heat of condensation or vaporization whatever we call. 

The amount of heat released dQ over the area dx times 1 must be transferred across the

condensate layer of delta thickness by conduction which we have assumed, ‘right’ in the

assumption number 6, ‘right’. So, therefore, we can write that dQ is k l (Tsaturation - Tw) / δ

times the area that is dx × 1, ‘right’. So, we got also dQ in terms of dx, ‘right’. 
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So, we can say of course, the new term which has come up in this is the k that is the k l is

the thermal conductivity of the liquid, Tsat and Tw we have said earlier also are the vapor

saturation and walls surface temperature respectively, ‘right’. So, introducing the term

dQ and dm into the equation earlier we have defined as H we can write that k l (Tsaturation -

Tw) /δ times the area dx × 1 that is equal to g ρl × (ρl – ρv) × δ2 δ / 4 µl, this equation we

wrote as equation H, ‘right’.

So, we can rewrite this equation as d δ dx because we have here δ and we have dx. So,

we can rewrite that d dx d δ dx is equal to µl ql × (Tsat - Tw)/ g × ρl × (ρl – ρv) × hf g, ‘right’

times 1/δ3, ‘right’. And the boundary form because this is if we want to integrate we need

a boundary. 

So, that boundary condition that satisfies is δ = 0 at x = 0, ‘right’, δ = 0 x at x = 0 which

is what this was our wall and this was our that fluid which is condensing we said our y is

in this direction, our x is in this direction.
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So, and since y is it that this direction, we are taken that element, ‘right’ of thickness l

and that was y δ – y, ‘right’, this our thing. However, here since it is in the y direction, so

at δ = 0 is x = 0, here it is δ is 0 at x = 0 that is the origin, ‘right’. So, if we take that, then

we can say the boundary condition that satisfies is this δ is 0 at x = 0 and integrating this

equation and applying the boundary condition, we can write.
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So, if we apply boundary and integrate, we can write that the thickness δ that we can

write in this form in this way that the thickness of the condensate layer is a function of



the position x along the plate that is also true. We have shown that this is the T wall Tw,

and this was the; this was the fluid which was condensing or liquidity is condensing,

‘right’.  So,  if  this  is  the  x  direction,  so  whatever  thickness  is  here  is  not  the  same

thickness here is not the same thickness here. So, this thickness is a function of x, ‘right’,

so, that is what we are saying.

That δx = [4 × µl kl × (Tsaturated - Twall) × x] / [g × (ρl – ρv) × ρl × hf g]1/4, ‘right’, because it

came that your δ was cube and so when it make you it was integrated so it became 4 and

that 4 δ 4 has now become 1/4 in this power, ‘right’. So, the thickness at any position x

in that film is [4 µl kl (Tsaturated - Twall) × x] / [g × (ρl – ρv) × ρl × hf g]1/4.

Now, since we have established a relation for the thickness of the condensate layer, the

local heat transfer coefficient hx or condensation is determined from the heat balance as

hx × dx × 1 × (Tsaturated - Twall) is kl × dx × 1 × (Tsaturated - Twall)  / δx, ‘right’.
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So, if this be true, then by changing the value of δ we can write that hx = kl × a kl over δx,

‘right’.  So,  this  we  can  rewrite  that  now  introducing  the  value  of  del  x  into  this

expression, we get hx is kl / [[(4/g) µl kl (Tsat - Twall) × x] / (g × (ρl – ρv) × ρl × hf g)]1/4 that

is the hx that is the heat transfer coefficient or at a localized heat transfer coefficient hx at

any position x. We had again reminded you that this was the direction of x.



So, h at position any position x is the localized heat transfer coefficient which can be

rewritten kl taking inside as {[g × ρl × (ρl – ρv) × hf  g kl
3] / [4 µl (Tsat - Tw) x]}1/4, ‘right’

this to the power 1/4 is the rewritten of this ‘right’. This goes up, so 4 µ l (Tsat - Tw),

‘right’ 4 µl this was g × (ρl – ρv) × hf g ×  ρl hf g of course ρl has been taken into that hf g

into this kl that kl has come down. 

So, it is kl, earlier we had 1 kl here to the power 1/4. So, when this kl is going inside, so it

has to be kl
3/4 µl (Tsat - Tw) and times k because k has been taken inside kl, ‘right’. So,

this is the hx the local heat transfer coefficient.
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Now, if we have the local heat transfer coefficient we can have an average heat transfer

coefficient like this. The local heat transfer coefficient hx varies with the distance x as 

x-1/4. The average heat transfer coefficient h average over the length 0 to l is in the plate

rather is h average is 1/l 0 to l hx dx or it is 4/3 hx at any x = l and that can be rewritten as

0.943 into [g×ρl×(ρl – ρv) hf g×kl
3] / [4 µl (Tsat - Tw)×l] so much W/m2.°C. 
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For laminar flow, experimental data show that this result is around 20% less than the

experimental data for which a new proposal has come up from the researcher saying that

Nusselt number can be related as this. Hence, the recommendation expression for the

vertical surface in laminar flow is like this NNu = hL/kl =1.13 [g ρl×(ρl – ρv) hf g×L3] / [µl

(Tsat - Tw)× kl]1/4.

So, h now is average, ‘right’, h is the average heat transfer coefficient not the local and

that is related to Nusselt number as hL/kl this is again not the in the wide number, it

would have been the solid,  but here it  is the fluid kl liquid.  So, hL/kl is the Nusselt

number expressed like this, where obviously, ρl density of liquid in kg/m3 ρv density of

the vapor in kg/m3, g in 9.8066 m/s2.

L length of the surface in meter; µl viscosity of liquid in Pa.s; kl thermal conductivity of

the liquid in W/m.°C; hf g latent heat of condensation in J/kg.°C at Tsat. All physical

properties of the liquid and hf except hf g are evaluated at the film temperature Tf is  

(Tsat + Tw) / 2 that is the average temperature of the saturated temperature of the vapor

and the wall temperature, ‘right’.
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So, we can now say the condensation on inclined surface that can be written as haverage is

0.943 {[g ρl (ρl – ρv) hf g kl
3] sin θ / [µl (Tsat - Tw) L]} depending on whether what is the

inclination to the power 1/4 in W/m2, where θ is the angle of vertical surface with the

horizontal  condensation  on a  horizontal  tube,  and condensation  of  course,  horizontal

surface that is the angle. 

Now, condensation on the horizontal T will be h a average is 0.725 {[g ρ l (ρl – ρv) hf g

kl
3] sin θ / [µl (Tsat - Tw) D]}1/4 so much W/m2, where D is the outside diameter of the tube

in meter.
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And since our time is very low we can say that h average over hav vertical / hav horizontal

is 1.3 (D/L)1/4. So, this means, that ΔT that is Tsaturation - Twall there is the average heat

transfer  coefficient  for  vertical  tube  of  length  L  and  horizontal  tube  of  diameter  D

become equal only when L = 2.7 time 2.8 times D. 

So, when L = 100 D theoretically hav hav horizontal would be 2.44 times greater than that

of vertical edge. So, this is y horizontal tube arrangements are generally preferred over

vertical in the condensers, ‘right’. 
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So, hopefully we have come to the end of the class. And we say some more here also a

little just for few seconds that is NRe = 4m / (π D µl), for vertical tube with diameter D.

NRe is 4m / (W µl) for vertical plate with width W. And m is the total kg mass / s of the

condensate active or plate bottom. For laminar flow NRe < 1800; for turbulent flow NRe >

1800. So, Nusselt number we can write 0.0077 (g ρl
2 L3 / µl

2 )1/3 and NRe
0.4. So, with this

we come to the end of the condensation.

And we thank you.


