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Heat Transfer by Radiation (Contd.)

 So, we are in the process of Radiation Heat Transfer, ‘right’. We have done a little on

preamble. I do not say preamble some understanding of the radiation. If we look at more

in a little detail and we have seen that a Stefan Boltzmann constant is one of the primary.

So, this is lecture number 35 under radiation heat transfer. 

(Refer Slide Time: 00:55)

So, if you look at the electromagnetic spectrum, this is explicitly for a for understanding

a real thing this is that this is under visible, ‘right’ visible wave length that this lambda is

micrometer you see 10-5, to 10-4, -3, -2, -1 10, 0, there is 1, 10, 102, 103, 104. 

So, -5 to -4 and here we are saying that electromagnetic radiation covers a wide range of

wavelength from 10-10 µm for cosmic rays to 1010 µm for electrical power waves, ‘right’.

Out  of  which  you see  gamma rays  are  within  this  range,  -4  to  -5.  Then X-rays  are

between -2 to -4 in µm ultra violet rays are somewhere between say 1 to 10 -2 within that

range and between 0.1 to 1 is our visible range, ‘right’ 0.1 to 1 is our visible range out of

which the lowest is violet and the highest is red, ‘right’.



So, violet, blue, green, yellow, red, red, vibgyor, ‘right’ so, indigo is in between; so, this

is the visible range and the thermal radiation range is within that that is 0.1 to 10 2 that is

under thermal radiation. Whereas, infrared is between somewhere say 1 or a little bit low

less than 1 to 102 or 100 and micro wave is between 102 to 103 and half, ‘right’ between

less than 104. 

So, this is how the electromagnetic spectrum that is looked into ‘right’. This is more than

radiation for information so that you have the idea of the spectra of the electromagnetic

radiation or spectrum, ‘right’. 

(Refer Slide Time: 04:09)

Now, let us look into a problem that a mass of gas at 600 K, ‘right’ and at 600 K, ‘right’

this is ɛgas corrected which will come afterwards is 0.19 10 to the power one 0.19 ×1.35

that is 0.256 which will come at the end. 

A mass of gas at 600 K and the total pressure of 1.5 atmosphere contains 10% water

vapor over a path length of 0.8 m. Calculate the emissivity of the gas given from a graph

of emissivity that is E gas E g of water vapor at a total pressure of one atmosphere for the

gas temperature of 600 K and pwL of 0.12 to be 0.19, ‘right’. So, pw is water vapor

pressure times L, so, pwL that it is meter atmosphere which will see afterwards, ‘right’. 

So,  from a  graph  of  the  emissivity  so,  epsilon  g  versus  this  pwL we  find  that  the

emissivity is 0.19, ‘right’. So, we have to find out that the emissivity of the gas because



this Eg water vapor at total pressure of 1 atmosphere has been found out has been given

as  0.19.  So, what  will  be when our pressure and a  total  pressure of 1.5 atmosphere

having 10% water vapor, ‘right’. 

(Refer Slide Time: 06:30)

So, the value which we have gotten epsilon g from the graph, ɛg as 0.19, that is not the

actual one because, we need a pressure correction,  ‘right’. So, the partial  pressure of

water vapor in the gas mass is pw equal to 0.1×1.5 because 10 point 10% water vapor is

equal to 0.15 atmosphere because total pressure is 1.5 out of which 10 % is water vapor.

So, it is 0.1×1.5 is 0.15. 

Then, the factor pwL for water vapor that becomes equal to pwL=0.15; the distance was

0.8, ‘right’ path length was 0.8 m. So, 0.15 × 0.8 is 0.12 m atmosphere, ‘right’. Given

emissivity is at a total pressure of 1 atmosphere. Hence a correction for pressure is to be

done incorporated from the graph of the average of partial pressure of water and a total

pressure of 0.825 atmosphere versus a correction factor for a value of pwL equal to 0.12

atmosphere which is about 1.35. 

Once we know this correction factor from the graph we can correct it as ɛg correction =

0.19 which is the value we obtain for 1 atmosphere and the corrected to the pressure is

1.35. So, 0.19 ×1.35 is 0.256. So, the ɛ has become 0.256.



(Refer Slide Time: 08:51)

If you remember we had said that the value emissivity value that varies between 0 to 1,

earlier in the last class we had said. So, it is never more than 1, ‘right’ and cannot also be

equivalent to negative. 

(Refer Slide Time: 09:08)

So, after this problem let us look into this. This is also another very good example which

in many cases we come across, ‘right’. Here we have taken a plate 1 and 2. So, this is

plate 1, this is plate 2. Plate 1 is at a temperature of T1 with emissivity of ɛ1 and a area of



A; plate 2 is temperature T2 emissivity a ɛ2 and area A and we have kept a shield, this is

called radiation shield, ‘right’. 

So, we have kept a shield radiating shield where both the phases they are at temperature

T3, but emissivity’s are different at one phase it is 3, 1 and another phase it is 3, 2 this is

this phasing 2, this is phasing 1. But, all are having the same area A because this same

plate we are putting in all three, ‘right’. 

So, in this case the general governing equation is 
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there been no shield, ‘right’, without shield it would have appeared like this. Now, let us

define one factor called J or normally known as radiosity or that is the radiation emitted

by a surface plus radiation reflected by a surface. So, emission plus reflection together is

the J or radiosity, ‘right’. So, that J once we so, that is what here we are making J and J

this is J1, so, J3,2; J2; J3,1, ‘right’.

And Eb let us define that to be a black body emissive power Eb. So, it is plate 1 that is Eb1

it is plate 2, Eb2 and this is the shield Eb3, ‘right’. So, ɛ is the emissivity and F which

comes here also F which is nothing, but view factor means how much is visible a view

factor that is also very much important. That we have a plane like this out of which some

portion is this portion is may be visible, but back side some are not visible. So, in that

case the view factor comes in. 

So, view factor is F1,3 that is this F1,3 between this and F3,2 between this, ‘right’ is assume

to be one for large parallel plates, ‘right’. If these be true then this situation can easily be

related as that Q quantity of heat is coming ‘right’ Q quantity of heat is coming and first

is coming to this plate number 1. So, that we are denoting it to be this Eb1 that is causing

a resistance. So, this we can easily relate like the electrical resistance analogy or thermal

resistance analogy, ‘right’. 
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Then Eb31 was this; then J1 was this; J31 was this; Eb3 was this; J32 is this one and J2 is

2,3
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. So, all these distances are there and if we this is

the electrical resistance analogy or thermal resistance analogy as we have done earlier in

conduction, ‘right’.
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So, if we look at the solution of it the heat transfer rate Q across the system with one

shield because we had given only one shield this was plate 1; this was plate 2 and this is

the shied that    
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I  repeat  that  Q1 that  is  that  one  surface  which  is  getting  the  heat
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Which  on  simplification  can  be  written  as  
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happened how? 

(Refer Slide Time: 17:12)

If we if we simplify this one then it becomes ɛ3,1 - ɛ3 ɛ3,1-1/ɛ3,1. So, it becomes 1/ɛ3,1 – 1,

‘right’. Similarly, from here this can be that 1 - ɛ3,2, ‘right’. So, this way 1/ɛ3,2, no the

other way it will be; it will be like this. 

(Refer Slide Time: 17:54)



1/ɛ3,2 - 1; this is from here and this one also 1/ɛ3,1  – 1, ‘right’. So, if this two minus is a

taken care of that is how it is 1/ ɛ1 + 1/ ɛ2 - 1and 1/ɛ3,1 from here and 1/ɛ3,2  from here

minus that another 1, ‘right’ this is how it came up. 

(Refer Slide Time: 18:32)

So,  this  can  be  now equated  that  Q1 is  nothing,  but  if  there  are  if  emissivity  of  all

surfaces are equal, ‘right’ that is all surfaces emissivitys are equal that is ɛ1 = ɛ2 = ɛ3,1

everything all are coming equal. Then we can write if there are n number of shields

having equal surface emissivity that will come, but if there equal then it comes to be

equal to Q1 equal to a 
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 because we said all if emissivity of all surfaces are

equal, ‘right’. So, that equal if that be equivalent to epsilon, ‘right’.

Then this is 1/ɛ + this is 1/ɛ, ‘right’ -1 this is also 1/ɛ this is 1/ɛ 1. So, -1 - 1, 2, so, here

we have taken 2 common here also we got 1/ɛ 1/ɛ that is 2/ɛ. Here also we got 1/ɛ 1/ɛ

2/ɛ.

So, 2 if we take common then 2/ɛ - 1 is the Q1, if all have the same emissivity epsilon,

‘right’. That is for a single emission shield, ‘right’ we had two plates in between single



emission sheet, then if they all have the same emissivity then we can write simplified for

a of the heat transfer rate as 
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Then it comes it was for a single plate emission shield, ‘right’. But, if we have N number

of emission shields having equal surface emissivity then we can write this to be equal to

you see for a single it was 2, 1 plus 1, ‘right’. So, then we can write for N number of that

this is 
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(Refer Slide Time: 21:53)

So, I hope it is understandable that this 2 came to be equal to this was for 1 shield. So,

that 1 shield can be written as 1 shield plus 1 if and there been 2 shields then it would

have been 2 shield plus 1. So, it would have been 3, if it would have been 3 shields then

it would have been 3 shield plus 1; that means, it would have been 4. Like that if we have

N number of shields then it is N + 1 and this of 2. 

So, it was (N+1) × (2/ɛ - 1) that is what is the QN, ‘right’. So, we found out Q1 or we

found out QN had there been same emissivity for all the surfaces equal to ɛ, ‘right’. 

(Refer Slide Time: 23:02)



Now, let  us  look into hence the ratio  of  heat  transfer  rates  for  parallel  plate  system

having N shields  and no shield  when all  emissivitys  are  equal  are  like  this  QN/Q is

nothing, but 1/(N +1), ‘right’. Why it is so?

(Refer Slide Time: 23:44)

Because, we saw that; we saw that here it was this factor; it was this factor which is

common in both the cases, ‘right’. It was this factor which was common for both the

cases, ‘right’. So, this goes out, cancels out when there is a ratio. So, QN/Q1, ‘right’ this

was like this 1/(N +1), ‘right’. So, that is what exactly we have shown in the next page

that is QN/Q is 1/(N + 1), ‘right’. 

For  two concentric  sphere  or  long cylinders  with for  two concentric  sphere  or  long

cylinders with opaque surfaces having A1 and A2 surface areas, T1 and T2 temperatures,

ɛ1  and ɛ2 emissivity of the inner and outer surfaces respectively and assuming F12 = 1, we

can write, for A1 = A2 = A we can write that 
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So, for A1 = A2 = A, this equation reduces to the same for parallel plates, ‘right’. A1 = A2

= A so, this becomes 1 and this becomes A. So, it was same as for parallel plate A × ΔA

× σ × (T1
4 - T2

4) /((1/σ1+ 1/σ2)-1), ‘right’. 

But, if it is we said two opaque surfaces having areas A1 and A2 surface areas. So, areas

changed from A1 to A1 and A2 temperatures where T1 and T2, fine, but emissivity also,

we have ɛ1 and ɛ2 only the areas we got changed. So, our Q that became equal to A1σ (T1
4

– T2
4) / (1/ɛ1 + 1/A2) times (1 - ɛ2) -1, ‘right’. 

And in earlier also we had shown that if the limiting condition is valid then that means,

the expression is  correct,  ‘right’.  Here what  is  the limiting  condition?  That  we have

written on the red ink red line or red ink that for A1 = A2 = A this relation should now be

equal to two parallel plates which we have done earlier, ‘right’. 

So, if that be true then it becomes A1 is A and this A1/A2  since they are same so, that

becomes equal to 1. So, this expression e becomes the expression for the parallel plates,

‘right’. If a radiation shield is placed between the two surfaces and ɛ3,1 and ɛ3,2 be the

emissivity  of  the  shield  at  the  surfaces  facing  the  inner  and  outer  surfaces  of  the

assembly respectively; then the situation will which will come up is quite different and

that we will find out, ‘right’. 



Hopefully, today whatever we have said we could have got it and since our time is now

limited so, we will stop it here. But, in the next class we will do that if there is a radiation

shield between them then what will be the Q and how it will be varying and maybe we

will do some problem, so that our understanding becomes more confident, ok.

So, thank you. 


