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Heat Transfer by Convection (Contd.)

Good morning. We have been dealing with Convection Heat Transfer if you remember

and we have given some of the very important non-dimensional parameters which are

very  useful.  Your  heat  transfer  typically  convectional  many  empirical  as  well  as

experimental both relations are available because as you have seen that the Newton’s law

of cooling their Q was equal to (h A ΔT), ‘right’.

Now, the problem is this h that is the function of many parameters. So, it cannot be

identical for any and every purpose for conduction heat transfer that Fourier law when

you are using that minus Q is minus k dt dx a. So, that time you are knowing that if area

is fixed if material is fixed and conductivity does not change then here you know the Q,

but here in convection if your area is also fixed, if your delta t is also fixed, but for

different system of transfer of heat h will be different for which that q also is different.

That is why very straightforward relation with h is very difficult, ‘right’.

So, today we will try to give you some ideas, not only ideas some relations which are

very helpful and to determine the h, heat transfer coefficient some problems also we will

try to solve. Only the problem could be that the solution I could not check beforehand

because  when  I  was  doing  these  slides  because  I  did  it  first  in  the  word  and  then

converted into that. So, I could not make the systematic way. However, we will do that

and many such correlations we will try to bring about, ‘right’.
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So, in our 31st class of Heat Transfer by Convection it is a continued one. We have

already given many numbers of non-dimensional numbers and these numbers are very

very helpful. Some of them we have said Reynolds number, Prandtl number, then earlier

we have also perhaps given the Nusselt number, ‘right’ and we have Biot number.

So, there also we said if you remember that the Biot number or Biot number and Nusselt

number both are having the same expression hl/K; l is the characteristic length, h is the

heat transfer coefficient, convective heat transfer coefficient and k for Biot number it is

the conductivity of the material through which it is being conducted whereas, in Nusselt

number it is the conductivity of the fluid through which heat is being conveyed, ‘right’.

So, this is the major difference between Nusselt number and Biot number and most of

these students make this mistake. That is why emphatically I am highlighting on this that

take care of this fine. Some more numbers which are very useful like Schmidt number it

is not necessarily that all of them are for only heat transfer some could also be utilized in

mass transfer. And, heat and mass transfer analogy if you go into there you will see these

non-dimensional parameters are very helpful, ‘right’.

So,  Schmidt  number  is  Sc  that  is  defined  as  υ/D that  is  the  ratio  of  momentum

diffusivity or viscous diffusivity to the mass diffusivity, ‘right’; υ/D . This D is not the

diameter, this D is the division coefficient, ‘right’ or mass diffusivity. That is why in the

definition  we are saying it.  Sherwood number this  is  also mass transfer related  non-



dimensional  parameter,  ‘right’.  Sherwood  number  is  
D

Lhρ
Sh Da  that  is  ratio  of

convective  to  diffusive  mass  transport,  ‘right’;  ratio  of  convective  to  diffusive  mass

transport.

Similarly, Lewis number this is useful for heat transfer also heat transfer rather this is

D


 again this is ratio of mass diffusivity and thermal diffusivity, ‘right’ 

D


;   is the

thermal diffusivity or diffusion coefficient, D is the mass transfer diffusion coefficient.

So, it is ratio of mass diffusivity and thermal diffusivity. 

Stanton number or it is written as St, it is also related with non-dimensional numbers

other and there  
PrRe

Nu


 that is Nusselt  number over product of Prandtl  number and

Reynolds number and significance is it is the ratio of heat transferred into a fluid to the

thermal capacity of the fluid. I repeat ratio of heat transferred into a fluid to the thermal

capacity of the fluid, ‘right’.
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Similarly, some other numbers could be Peclet number, ‘right’. This is also very useful

in both; in this is majorly in heat transfer and that is Pe, Peclet number is product of

Reynolds number and Prandtl number, ‘right’ or NPr and NRe; NRe times NPr. So, this can

be defined as ratio of the rate of advection of a physical quantity by the flow to the rate



of diffusion of the same quantity driven by an appropriate gradient. I repeat ratio of the

rate of advection of a physical quantity by the flow to the rate of diffusion of the same

quantity driven by an appropriate gradient, ‘right’.

And, perhaps the last number which we are telling you there are some more also, ‘right’

there are some more also, but I do not like to bring all to you because may or may not be

you will  be utilizing all  of them at least  many of them will  be utilized or are being

utilized in this heat transfer course. But, some of them may not be in the heat transfer

course or may be required for mass transfer if it is not in this class in other classes, but

should be known also, ‘right’.

Like  this  one  we  have  already  used  Fourier  number  Fo  that  is 2αt/l .  I  hope  you

remember that when we were using Heisler chart, that Heisler chart we had typically

used  this  Fourier  number  in  the  x-axis,  ‘right’  this  is  called  non  dimensional  time

parameter, ‘right’. 

Fourier number is a non-dimensional time parameter  2αt/l  ‘right’ which is the ratio of

the heat conduction rate to the rate of thermal  energy storage.  Repeat,  ratio the heat

conduction rate to the thermal energy storage. This time that is alpha t perhaps till now,

whatever you have seen in none of them directly we had time as one of the parameter,

‘right’.

So, far we have seen in non-dimensional units or non-dimensional numbers in none of

the numbers you have used time as one of the variable, but in Fourier number only it is

2αt/l  and that  is  why this  is  also known as  non-dimensional  time,  ‘right’.  So,  non-

dimensional time because time is second minute or hour whatever be the unit, but here in

Fourier number you do not have any unit it is also non-dimensional  2αt/l ,‘right’. So,

like that you have many numbers which we have say said. Now, let us utilize them,

‘right’, ok.
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Some  of  them  are  utilized  in  this  way  as  I  said  that  there  are  many  relations  or

correlations available for heat transfer typically convective heat transfer, ‘right’. And that

is valid for different regime different conditions; flow either flow conditions or boundary

conditions etcetera. So, heat transfer coefficient inside tube, ‘right’.

So, we would like to find out the heat transfer coefficient inside tube. What condition?

Condition is laminar flow ‘right’ and this is called Nusselt-Graetz correlation. Nusselt

Graetz correlation, ‘right’ that is valid for thermal entrance length with parabolic velocity

profile and constant wall temperature, ‘right’. This is valid for thermal entrance length

with parabolic velocity profile and constant wall temperature.

So, Nux is given like that 1/3
i /x)D1.007(Pe  ,‘right’ and this is valid that is why I said

that regime; the word regime I utilized that it is valid between 2
i 10/xDPe  , ‘right’.

So, this is valid for that whereas, this Nusselt number x; x means at any position because

Nusselt  number  is  hl/K,  ‘right’.  So,  this  is  x  at  any  position  that  is  3.66  when

2
i 10/xDPe  , ‘right’.

Similar, other relations average Nusselt number this is localized Nux. So, this is average

Nusselt  number  x  is  anyway x  rather  1/3
i /L)D1.61(Pe  valid  for  2

i 10/LDPe 

where as it is 3.66 when Pi into Di sorry 2
i 10/LDPe   where of course, Peclet number



Pe is the Peclet  number as we have already defined equal to Reynolds number times

Prandtl number which is again nothing, but 




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
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K

μC

μ

ρVD Pi , ‘right’.
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So, like this some more correlations we look into like Hausen’s correlations. Hausen’s

correlation is valid for developing hydrodynamic and thermal boundary layer and for

constant wall temperature. So, again it is a /L)Pe0.0668(D3.66 Nu id  . Of course,

these nomenclatures are normal like Di meaning internal diameter; L meaning length. 

So, these are implicit, ‘right’, over   3/2
i /L)Pe(D0.041 . This is with respect to Nud,

‘right’  in  terms  of  diameter  whereas,  average  Nu  this  is  a

   0.467
i

0.8
i

Pe/LD0.1171

/L)D0.19(Pe
3.66 Nu




 , ‘right’.
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So, let us look into some other relations. This is very useful particularly when you are

doing food handling and or liquid food or liquid fluid handling through pipes, ‘right’.

Obviously, flow in conduit and open flow they are quite different. That is the difference

between that maybe your land and water and food and chemical. So, where mostly it is

under bounded condition whereas, in land and water it is open, ‘right’.

However, but many basic things are common it has to be. So, they do not use this one

Sider Tate because normally this is for the conduit. So, Sider Tate equation is this is

valid for constant wall temperature mu w is the viscosity at the wall temperature, ‘right’.

In many cases you will see there is I do not know whether it is with me or not that is

called Detus Voltars equation, ‘right’. 

In one case that this is called viscosity correction factor that is mu over mu w this is

called viscosity correction factor. How it is coming, ‘right’. Maybe in all the cases it will

not be possible for us to explain because of the time constraint, but when it has come let

us say that you have a pipe, ‘right’ and this is the central  axis, ‘right’ and a fluid is

flowing, ‘right’.
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And your pipe it has say outside temperature is T whereas, this fluid as a temperature

of say Ti and obviously,  T is may be much greater than Ti or less than how does it

matter? It does not matter, T will be much less than Ti, ‘right’. In one case one it will

have a have one type in other case it will be just inverse or reverse, ‘right’. So, when it is

coming as we know that viscosity mu is a function of temperature, ‘right’.

In most of the cases without exception, in most of the cases the viscosity is a function of

temperature that is true, but as the temperature increases viscosity decreases, ‘right’, this

is by enlarge happening. As the temperature is increasing viscosity is decreasing or that

vice versa as the temperature is decreasing viscosity is increasing it is becoming more

and more viscous; viscosity increasing when more and more viscous, ‘right’.
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So, when we had this  flow. So, the viscosity at  the wall  which was  T around and

viscosity at the center which is say Ti around, ‘right’ are quite different. So, unless you

take care of this viscosity correction then you will have some error. So, that is what the

Sider Tate correlation has incorporated that. 

So, valid for constant wall temperature and mu w is the viscosity at the wall temperature.

Then Nusselt number in terms of diameter is     14.03/13/1 //86.1 wi LDPe  . This is in

many cases through pipe flow are utilized, ‘right’.
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Similarly,  some  other  like  Schlunder’s  correlation  it  is  valid  for  constant  wall

temperature and the average Nu is 3.66; Nu is Nusselt number. Again h l / k do not forget

that  this  k  is  the  conductivity  of  the  fluid  or  the  medium.  So,

  3/133 )]/.(61.1)66.3[( LDPe i , ‘right’.
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So, if this is true then for constant heat flux, again under different conditions for constant

heat  flux    3/1/.302.1 xDPeNu ix  ,  where  410/. xDPe i .  Whereas,  NuD is  means

Nusselt  number in  terms of  diameter  is  4.36.  This  is  also valid  for  P i into Di sorry

310/. xDPe i . Average Nusselt number is   3/1/.953.1 xDPe i  that is 210/. xDPe i .

Similarly, for average Nusselt number is 4.36 if  310/. xDPe i ‘right’. So, this type of

many correlations are there, perhaps some more will also bring in because as and when

you will have different situations of your system, that time you may need to utilize it,

‘right’. And, these are collections from different resources that is why I preferred that I

should share with you so that in future when you are doing your either master or post doc

or doc that time you may be required, ‘right’. So, with this let us stop today here and. 

Thank you.


