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In the previous class we have seen that lumped system analysis how it can be done,

‘right’. And, today we will do another that is where the boundary conditions are given,

‘right’. Boundary conditions if are given, then we can solve it analytically. We will do

that today and in the previous class we were discussing about the problem, that a slab is

bounded in the two sides; one with a convective boundary condition and the other with

the constant heat flux boundary condition, ‘right’. 

So,  under  that  situation  if  the  slab  is  having  a  thickness  L,  then  what  will  be  the

temperature distribution in the body that we can find out by solving it, ‘right’.

(Refer Slide Time: 01:39)

So, we come to this that if the boundary conditions are given, that we have a heat flux of

q watt per meter square, in a slab of thickness L and the other boundary is a convective

boundary with the heat transfer coefficient of h and the temperature is Te. 

Then  a  slab  of  constant  with  the  thickness  of  L  at  an  initial  temperature  of  T 0 is

considered and heat is supplied at one end of it is boundary surface at the constant rate of



heat flux that is q watt per meter square, when time is greater than 0 or t is greater than 0.

Heat is dissipated by convection into the other boundary surface into your medium at

uniform temperature of Te with a heat transfer coefficient of h, ‘right’. 

(Refer Slide Time: 02:36)

Perhaps a similar problem we have done earlier also, ‘right’;. If the area for heat transfer

on both the sides of this plate  is assumed to be equal to A and applying the energy

balance equation we can write, that
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And, this is the steady state temperature in the slab that is where theta tends to infinity is

the steady state temperature.

(Refer Slide Time: 05:53)

An electric iron has a steel base having density  = 7800 kg/m3, Cp that is specific heat

Cp = 400 J / kg oC, conductivity = 80 W / m2 oC, weight M is 1.2 kg, ironing surface area

A is 0.03 meter square, perhaps this problem we have not done. A similar solution might

have been, but this problem we have not done, 0.03 meter square is heated from the other

surface with a 300 watt per watt heating element.

The initial temperature of the iron is Ti = 25oC and the heating starts suddenly. The iron

starts dissipating heat by convection from the ironing surface into an ambient at Te is

equal  to 25oC with a heat  transfer coefficient  h equal to 60 W / m2 oC. What  is  the

temperature of the iron when t is 5 minute after the start of the heating? What would be

the equilibrium temperature of the iron if the control did not switch off the current? 
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How it is coming into this unsteady, because you see after time 0 suddenly you have put

one iron, which is starting heating, ‘right’. That you everybody you or every one of us do

that while ironing you put the switch on, ‘right’. So, you in that iron down below, there

will be some electrical resistance through which this electricity process and by which

that i square r is that is that element is heated, ‘right’.

So, you were heating and then doing the ironing and after doing you forgot to switch it

off, ‘right’. So, what will be the effect? is it that if that iron will go on increasing the

temperature? Perhaps not i.e., what is the problem, that is why it is that a little unsteady

and the solution we have to find out through the analytical solution. Because, in this type

of thing Biot number will not come into, because hl/ k is that if you see it will be very

high, it is not less than 0.1. Though here we have not shown typically in this problem,

but the solution itself says that it is almost equal to that solution of unsteady and the iron

is the example for that, ‘right’.

So, if we look at the problem once more then it becomes easier, more clear to you that an

electrical iron has a steel base having density of 7800 kg/m3, specific heat of 400 J / kg
oC. So, conductivity k is 80 W/moC weight of the material is 1.2 kg, ironing surface area

through which we are ironing you see most of the iron is like that, this end is little cons-

equated and gradually it is expanding, ‘right’ one end is narrow or pointed so, ‘right’.

So, the total area of iron is 0.03 m2, heated from the out other surface with a 300 watt

heating element. Initial temperature of the iron is 25 oC and the heating starts suddenly,

because you switched off suddenly or switched on suddenly so, that you can iron it,

‘right’.

The iron starts dissipating heat by convection from the ironing surface into an ambient

where the temperature is 25  oC with a transfer coefficient of 60 W/m2oC. What is the

temperature of the iron when t is 5 minutes you have been ironing you have been put on

the switch for 5 minutes your system is on, what will be the temperature? 

That is number 1, after the start of the heating, ok. What it would be the equilibrium

temperature of the iron, if the control did not switch off the current? If the problem we

have defined in a different way actually it is like that.



So,  you  were  doing  that  ironing  sometime  after  doing  that  few you  have  suddenly

forgotten to switch off and you left the place, ‘right’, that is what equivalent to that, what

will  be the  equilibrium temperature  of  the iron  if  the  control  did  not  switch off  the

current? That means, you have not switched off the current. If that be the condition what

will  be the maximum and that  is  what  we call  it  to be the steady state  temperature,

because that iron will not go on increasing the temperature, rather then it will become red

hot and then suddenly burst like that it does not happen, ‘right’. So, that is a real example

or real problem which we are solving, ‘right’.

(Refer Slide Time: 12:08)

So, we have understood the problem and the solution of heat we can say, that here also

we are finding out first 

So, Biot number is 0.003. So, if it is 0.003 similar to that earlier we can use the lamp

system, ‘right’.

So, here that lamp system was the solution 
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If that be true initial and the temperature which was there let me see where is the where

is the pen with this side I have kept, ok. So, if we see that so, initial temperature was

given 25 and environmental temperature is also 25, ‘right’. And, the earlier that area was

0.03, conductivity was 80, this we have changed to m and the other things remaining

same.

So, we have found out Bi and then now we are finding out the solution this solution we

have already found out earlier and Bi we have found out to be equal to 0.3 0.2 10 to the

power minus 3 that is 0.003, ‘right’. So, 0.003 say applying the lumped system analysis,

we found out theta T is theta 0, e to the power minus mt plus 1 minus e to the power

minus mt into q by h, this we have just solved it with the boundary, ‘right’. Where theta

0 is Ti minus Te that is 25 minus 25 that is equal to 0, ‘right’.

So, theta 0 is 0 and q the value of q which was not given which was given 300 watt that

much of supply heat being supplied 300 watt, but q is a flux. So, that is watt per meter

square, ‘right’ so, to get the q what we need to do we have to divide with the area. So,

that is what we have done q is 300 by 0.03 that becomes equal to 10000, that is 10,000

watt  per  meter  square,  that  we have  found out.  Because  we were given that  heat  is

supplied equivalent to 300 watt, ‘right’.

So, that 300 watt we are now converting it to the heat flux, which is watt per meter

square. So, by dividing that with the area of the heat transfer that is 0.03. So, 300 by 0.3

is nothing, but 10,000, ‘right’, so that we have found out. 
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Now, we have to find out the temperature distribution ‘right’. 

So, value of q was watt per unit of q was watt per meter square and unit of h is watt per

meter square degree centigrade. So, this goes out; so degree centigrade is the unit. So,

that becomes 166.66 degree centigrade. So, the equilibrium temperature; that means, if

you have not put the power supply off, then the temperature will rise from 148 to 166

and it will be at that temperature only, ‘right’.

Because,  why you are  not  changing the  300 that  3  you remember  that,  you are  not

changing the heat source that is 300 watt; that means, that it is i square r, there is i you

are not changing, v you are not changing, r you are not changing, so that is fixed. So,

correspondingly your watt supply is also 300.
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So, it will come to your steady that is 166.66 and where it will remain, if we do not put it

up it will not go beyond that temperature, ‘right’. So, hopefully we could have explained

the situation and we have come to the end of the class for this. So, let us call it a day.

Thank you.


