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Lecture - 20
Heat Transfer in Finned Surfaces

Good morning. We had been talking about the finned surfaces Heat Transfer in Finned

Surface and perhaps we said that and the finned last class today we would like to also

correlate the fin efficiency and some other vital parameter on which the different graphs

have been plotted against fin efficiency and how those parameters came up today would

like to also highlight on that. And, as we are saying repeatedly as I am saying repeatedly

that please also look into your problems and solutions.

It is not that whatever problems we are solving here you only concentrate on that, but

also try to solve some many other problems associated with the topics we were covering.

That will help you in understanding the subject in a better way because solving problems

gives you confidence, ‘right’. So, we come back to heat transfer in finned surface in

lecture number 20, ‘right’.

(Refer Slide Time: 02:15)

So, this was our finned surface, ‘right’ and as we said that there are different there are

this  was the  fin  base,  ‘right’  and this  was the fin,  ‘right’  and this  is  on rectangular

coordinate and this was on cylindrical coordinate, ‘right’.



So, we know the sectional area A; we know the perimeter P; we know delta X or X; we

know  heat  transfer  a  coefficient  and  we  know  the  ambient  heat  transfer  ambient

temperature, ‘right’. So, it can be T∞ or T0 as I said earlier that in many cases people do

nominate  to  people do nomenclature  in  such a way that  T∞  is  also equivalent  to  Ten

environment, ‘right’. So, this is the thing on which we are working, ‘right’.

(Refer Slide Time: 03:53)

So now, let  us define  another  important  very much parameter;  very much important

parameter that is fin efficiency, ‘right’. So, fin efficiency is defined as the actual heat

transfer through fin divided by ideal heat transfer through fin if the entire fin surface

were at  the  fin  base temperature  T0,  ‘right’.  So,  entire  fin  surface  is  at  the  fin  base

temperature T0, if that is there then the heat transfer through the fin can be assumed to be

the ideal heat transfer, ‘right’. So, actual by ideal that we have to find out and that is

equivalent to the fin eta that is the fin efficiency.

Now, then what is then actual heat transfer and ideal heat transfer? Ideal heat transfer

will be equivalent to af×h×θ0, ‘right’ to where θ0 is the T0-Te or T∞, whatever we call. T0 -

Te that is the environmental temperature ‘right’ that is theta 0; af is the surface area of the

fin  and  h  is  the  heat  transfer  coefficient.  Now,  all  are  in  SI  units.  So,  we  are  not

separately letting you know what is  the SI unit  of h? So, it  is,  we know, W/(m2ºC),

‘right’, and surface area is in m2n ‘right’. And like this delta I mean θ0 is in ºC, ‘right’.



Now, this fin efficiency is obviously, that you are referring as Q fin over Q ideal, ‘right’.

So, whatever fin has actually transferred heat through the fin that is actual heat transfer

through the fin over the ideal heat transfer through the fin if the entire fin would have

been at the fin based temperature of T0, ‘right’. So, if this is there then and we said that Q

ideal is equivalent to af×h×θ0.

(Refer Slide Time: 07:07)

So, then what is the fin real that is actual? What is the fin actual? Fin actual will be like

this  that  the  heat  transfer  through  the  fin  is  Q=  ηQideal,  ‘right’;  η×Qideal that  is  fin

efficiency into Qideal that is what it is because here we said that Qfin here we said that Qfin

this is equal to eta times Qideal, ‘right’. That is the Qfin  actual. So, if we can make Qideal

then we can also frame what is the Q actual or real heat transfer ‘right’. So, this eta Qideal

is η×af×h×θ0, ‘right’.

So, if we have a plot of fin efficiency η versus L√(2h/kt), L times under root 2h by kt. If

we  have  a  plot  of  this,  ‘right’  for  typical  geometries,  ‘right’  this  is  also  geometry

dependent like we will show it in a figure say 1, that shows the fin efficiency of actual

fins where the fin thickness y may vary with the distance x from the fin base when the

thickness is T, ‘right’.

Similarly, another figure that will show the fin efficiency for the circular disk fins of

constant thickness, ‘right’. So, this, if we look at the first one is eta versus L√(2h/kt) for

different fins, ‘right’.



(Refer Slide Time: 09:33)

That you see in this figure we are plotting L√(2h/kt), ‘right’ we have said that t is the

thickness, ‘right’, t is the thickness; h is heat transfer coefficient; k is the conductivity of

the fin material, ‘right’ and L obviously, that is the length of the fin, ‘right’. So, here this

versus fin efficiency that Q ideal which we have said is equal to af×h×θ0. Af is the surface

area of the fin; h is the heat transfer coefficient and θ0 is T0-T∞, ‘right’ or Te whatever we

name it, ‘right’. It can be θ0 equal to T0 -Te or T∞ whatever, ‘right’.

So, for different geometries we said there. So, here y is equal to t, ‘right’ this is the t,

‘right’ and this y is equal to t. Here y is a function of t as t into x by L to the power half,

‘right’. For this is ‘A’ geometry; this is ‘B’ geometry; for ‘C’ geometry you see it is

more sharp at the end (Pl. refer to the above figure). This is y is a function of t, but it is

equal to t x by L ‘right’ and for the ‘D’ this is another type of fin where it is y is equal to

t into x by L to the power 3 by 2. And for ‘E’, ‘E’ is another type of where you see it is

absolutely a long portion is very much sharpened, ‘right’ or pointed ‘right’. So, where y

is equal to t x L x by L to the power 2, ‘right’.

If these are different fin types then we have plotted this fin efficiency versus L under root

2h / kt ‘right’ where efficiency of axial fins where the fin thickness y varies with the

distance x from the root of the fin where y is equal to t, ‘right’. So, this y is equal to t,

that is this thickness, ‘right’ and if we see the next one this figure says like that.



(Refer Slide Time: 13:24)

If we look at the next figure that is figure 2 which we referred to earlier this is that for

the circular fins, ‘right’. Here also you see that the L under root 2h / kt, ‘right’ this is

plotted against the fin efficiency, ‘right’. For different ro/ ri ‘right’. So, this first one is ro/

ri 1 and this last one is ro/ri is 4 in between 1.4, 1.6, 1.8, 2.0, 3.0 etcetera are also there,

but the thing is that what we need to know that what are the different parameters like L,

like t and here ro and ri, ‘right’.

This to understand these things we need to see this picture, ‘right’ where you see ro is the

outer radius, this is the ro, ‘right’ and ri is the inner radius that is this one, ‘right’. So, ro

and ri are known and L is this, ‘right’, L is this that is this is the L, ‘right’. So, if L is this,

‘right’ ri is this one and ro is this one, ‘right’ L is this and t is the thickness which one is

this one, ‘right’. So, ro, ri is known, t here is known, k is already k and h are different k is

the conductivity of the material h is the transfer coefficient and L that we have shown

this to be like this, ‘right’ L to be like this.

So, once you know then you can find out by knowing this parameter for different ro over

ri you can find out the fin efficiency for circular fins which is like this, ‘right’. You

remember the other day, I said that putting something like that on which we call 2 d per

hour. So, that kind of thing when you are making a shrink fitting and that shrink fitting is

happening here for circular fins like that. Whereas, the other one which we showed there



it is not so much where the contact resistance thermal contact resistance could be factor

if not properly done like this one, ‘right’.

Here you see on this base you have put the fin in such a way that this is the thickness this

is the thickness and this all are t, ‘right’ this all are t’s and this is the L, ‘right’ from this

to that; from this to that; from this to that; from this to that and from this to that.

(Refer Slide Time: 17:22)

So, you know t, you know L and h and k are given. So, you can find out fin efficiency

and if you know the fin efficiency then if you know the Q ideal which is a f h theta 0

then you can find out Qreal or Qactual as Qactual is equal to η×Qideal, ‘right’. So, this way you

can find out what is the Q for the actual already you have found out Q for ideal cases,

‘right’.

So, let us look into that where we where we left. So, there if we go that fin we were here,

‘right’. So, for from the plots of  η versus and for different geometries we can

find out the values of eta for different geometries or for the for the circular fins also,

‘right’; circular this type fins also where the thickness was constant, ‘right’.

For all practical purposes the fin heat transfer surface is composed of the fin surfaces and

the un finned portion, ‘right’. So, obviously, if we if you remember the previous graph

which we had shown that fin surfaces where this was like this let us say in one case this

was like this. So, and if this is the fin then the surface area of this plus un-finned portion.

2hL kt



So, un-finned plus fin portion is the total surface area and the total heat transfer Q total

from such a surface is obtained by summing the heat transfer through the fins and the on

fin portions, ‘right’ and this can be done by summing finned and un finned portion as it

is shown like this.

(Refer Slide Time: 19:57)

Qtotal = Qfin + Qunfinned  = η af h θ0 + (a – af) h θ0 ; obviously, af is the finned area where, fin

is there and ‘a’ is the total heat transfer area that is fin plus un finned, ‘right’. So, from

the total heat transfer area finned and un-finned if we subtract the finned area then we get

the un-finned area which is there, ‘right’. So, if we know that total surface area where the

finned or un-finned together then.

So, as a practical guide ratio of Pk by should be much larger to justify the use of fins that

is Pk / ah, you also see that for a given area and for a given material, k is known and for

the given system, h is known. So, if area times h, ‘right’ if that product is X and the

perimeter times conductivity, if that is Y then Y has to be much greater than X then only

you can justify adding fin.

Otherwise, if you are adding finned for no reason then the additional cost involved in it

that will not be justified with respect to heat transfer. If heat transfer is not improved then
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what is the point of what is the point of extending the surface area because that is also

cost involved.

(Refer Slide Time: 23:52)

So, in that way if we look at that Pk / ah, this value should be much larger and to become

it much larger for a given P, for a given ‘a’ or Pk / ah, ‘right’ P is the perimeter, ‘a’ is the

area for a given P and for a given h, if k is becoming higher, the higher the value of k the

more is the value of Pk / ah, ‘right’. So, more it will be justified or fine you can you can

say that now adding fin is helpful for the heat transfer, ‘right’.

So, for plate fins P/A is nothing, but 2/t that is there.



(Refer Slide Time: 24:48)

So, if the fins are like that plate then it is that thickness if there this is the thickness then

P/a that is perimeter work the area that is becomes equal to 2/t,‘right’.

(Refer Slide Time: 25:20)

So, this if it is so, then we can find out the value of Pk by as 2k over t over h, ‘right’. So,

because P by A has been equivalent to 2 by t; so, Pk is ‘right’  which implies

that  internal  conductance  of  the  fin  should  be  much  greater  than  the  heat  transfer

coefficient  for the fins  to  improve heat  transfer  rate.  Internal  conductance  of the fin
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should be much greater than that  is this  internal  conductance of the fin through you

should be much greater than the external heat transfer coefficient, ‘right’.

So, with this let us solve a very simple form problem that what is the expression for the

efficiency  of  fin  of  uniform  cross  section  when  the  heat  loss  from  the  fin  tip  is

considered negligible? ‘right’, we have already seen that                 that

was total Q to the fin. And, and this can be solved that heat transfer area for fin of length

L and perimeter P is af equal to PL and Qideal that can be said to be equal to 

(Refer Slide Time: 27:34)

where, P/A = 2/t, t being the fin thickness. This is why fin efficiency is plotted against

the parameter                 .

So, this we said in the beginning that why this L under root 2h by k or 2h by kt or Ph by

Ak. So, ultimately to it was 2h by kt. Why it is plotted against efficiency is because of

this, ‘right’ that efficiency can be ultimately termed in terms of tan hyperbolic mL over

mL where mL is nothing, but L times P and L times √(Ph/Ak) that is
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So, this is why we have plotted subsequently this which we have shown you, ‘right’ this

one that        and this is fin efficiency and the next one was also           that the

against fin efficiency, ‘right’. So, with this let us conclude the heat transfer through fins,

‘right’ and please do some problems as and when you can.

Thank you.
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