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Lecture - 17
Finned Surfaces

So, good afternoon. We were discussing about the Finned Surface heat transfer, ‘right’.

So, why fin is required in the previous class we have discussed, ‘right’. And today we

will do the analysis of the fin heat transfer, how the heat is being transferred through the

fin surface. 

The necessity of the fin addition we have discussed in the previous class along with that

contact  thermal  resistance,  ‘right’.  So,  thermal  conductor  resistance,  so that  we have

discussed and also the drawing we had shown.

Hopefully, if you remember we had given this drawing that this is the base where the fin

is attached, this is the rectangular. And if it is a cylindrical then it would have been like

this. We said the perimeter P, sectional area A, heat transfer coefficient surrounding h

and a temperature of the surrounding T these are all known. And we have taken section

where we have this delta x as the thickness or delta x as small volume element delta x

and the thickness is T, ‘right’ this height is T. So, we can now do the analysis, ‘right’. 



(Refer Slide Time: 02:07)

So, if you look at there are some basic assumptions over it during developing the heat

transfer  equations,  there  are  some assumptions  for  this.  First  assumption  is  that  one

dimensional heat transfer is occurring then steady state heat transfer is occurring, and for

fins of uniform cross section that is also another thing. Because fin can be uniform or

non-uniform there,  but  the  one drawing which  we had shown was of  uniform cross

section.  If it  is not uniform then the solutions become very critical  and may be very

complex, ‘right’.

So, to do that we have to do maybe, it may be required now different techniques have

come up finite element, finite surface, all these analysis could be required, ‘right’. So, we

are not going into that. But definitely we are assumptions are to be clear, that uniform

cross section is there and the governing equations for these are that net rate of heat gain

by conduction in the x direction into the volume element of delta x and that T, ‘right’

delta x we have taken that volume element which we have given the shaded, ‘right’ is

that net rate of heat gained by conduction plus net rate of heat gained by convection

through lateral surfaces into the volume element delta x, ‘right’. 

This must be equal to 0 because we have assumed steady state, ‘right’. So, there is no

generation of heat or there is no accumulation of heat, ‘right’. So, it is steady and one

dimensional and uniform cross section of the fin, ‘right’.



So, this two governing equation is very much required that the net rate of heat gained by

conduction in x direction into the volume element which we have taken as delta x and

that shaded portion and this plus the net rate of heat gained by convection through the

lateral surfaces into the volume element delta x and that shaded portion must be equal to

0. So, let us show that shaded portion again that this is this, this delta x we have taken,

‘right’ and this volume element we have taken, ‘right’. So, delta x is this and this is the

T; this is T, ‘right’ and this is the width third dimension, ‘right’. So, whatever be the

width, so that we have; obviously, taken in terms of sectional area as well as perimeter

which will come afterwards, ‘right’.

So, keeping in mind this very basic equation or basic governing equation let us now go.

First one is this we have taken conduction equation as 1, convection as 2, so summing up

of these two will result to us 0. 
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So, the net heat gained by conduction as it is shown as I which is Roman one, we had

shown. So, this is equal to  

So, this is . The net heat gained by convection is again by two this is oh no,

so this is not that, this is that distance, delta x is the distance, ‘right’. So, it is delta x

only. Like here also the second part is two is h into that we know h∆TA, ‘right’. So, here

h into A, A is the perimeter times delta x, ‘right’, perimeter times delta x that is why it
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struck because in many other cases we take this others you side to be unit, so that is why

delta x into 1 in many cases. So, I made it compute. So, this is not this is a distance delta

x, ok.

So, P times delta x is the perimeter times delta x area, h is the transfer coefficient and Te

minus Tx is the delta T. So, this is the net heat gained by convection 2, this is the net heat

gained by conduction that is 1. So, we can write where we have explained what is what

that the cross-sectional area is A, the perimeter is P, the heat transfer coefficient is h and

the thermal  conductivity  of the material  is k and k is  also constant,  ‘right’.  So, it  is

independent of temperature. Normally, k as we said earlier also k may be a function of

temperature or k may be related to temperature. But we are for all practical purposes we

are assuming it to be constant, ‘right’. 

So, if we put them into the governing equation then we can write the governing equation

to be d2T(x)/dx2, ‘right’. And this one is h×(Te -Tx)×P×∆x, ‘right’. So, that we rewrite d 2

x here you remember here we had written kA d2x/dx2 delta x it was that, ‘right’. 

Now, if we this was 1, ‘right’ and now if we divide this on the both sides then this side

which was d2T(x)/dx2 we had kA that we have divided here. It is no longer here, so we

have here one P, one delta x was here, so we have divided both sides with kA delta x,

‘right’,  kA  delta  x  we  have  divided  after  adding  1  and  2,  and  rearranging  we  get

d2T(x)/dx2and this becomes minus because Tx is now coming to first. So, then it becomes

minus, minus hP over A k into Tx-Te this is equal to 0, ‘right’. I repeat because this is

first, we have found out what is the first; we have found out what is the I, ‘right’ this is

coming red color which cannot be erased 

However, this will be very also true for you, you can also make it that this is one where it

is minus d qA by dx into delta x, ‘right’ d dx of qA into delta x, ‘right’, that is the one

and this is equal to kA d2T(x)/dx2into delta x 1, and the P and the second term that is

convective heat transfer was h into delta T into area P into delta x, ‘right’. So, if we add

them then we get, you see I am writing here kA d 2 T, I am not writing again x dx

square, ‘right’ into delta x plus h Te minus T say x, ‘right’. So, here also let me write

down x, Tx is into P into delta x this is equal to 0 by adding 1 and 2 equal to 0 from the

governing equation which we had earlier, ‘right’.



Now, if we rearrange it then it becomes instead of minus plus this becomes minus and

this Tx becomes plus and this Te becomes minus, ‘right’. And if we divide both sides

with h is on the top, P delta x, ‘right’ and k no, hP is there, so if we divide both sides

with kA and delta x, ‘right’. 

So,  if  we divide that  then we get this  delta  x goes out,  ‘right’  this  delta  x goes out

because we are dividing. So, it becomes d2T(x)/dx2, ‘right’ and here we had h and P. So,

hP divided by kA, here also we have no kA that got cancelled out. So, hP by Ak this

remains there and this one rearrangement we have written like this, ‘right’ Tx-Te is equal

to 0.
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This  equation  we  can  rearrange  and  make  more  compact  in  the  form  of

this we are writing, ‘right’ in terms of this where obviously, θx is Tx-

Te. So, θx also has the same unit as the temperature as degree centigrade, ‘right’. And m

square we are defining as hP over Ak, ‘right’, m2 we are defining hP over Ak. You see

what will be the unit of m2, h is W/m2ºC, ‘right’, P is perimeter meter, A is m2, ‘right’

and k is W/mºC, ‘right’. 



So, degree centigrade degree centigrade goes out, ‘right’. In terms of what? We can write

it to be Joules per second, ‘right’. So, we have Joules per second, here 1 meter and 1

meter, this meter scale goes out, ‘right’, ok. No need of joules per second because this

Watt and this Watt also goes out, ‘right’. Then we have only 1 meter square. So, m

square is inverse of meter square, ‘right’; so, m is inverse of meter, ‘right’. So, unit of m

is inverse of meter, ‘right’. 

So, we can then this is the equation where the basic equation which we had is it was like

this, ‘right’ and this on substitution with θx is Tx-Te and

m2 is equal to hP by Ak if we substitute then we can rewrite this equation in terms of

‘right’. This equation A, is known as one dimensional fin equation

for fins of uniform cross section and is a linear  homogeneous second order ordinary

differential equation with constant coefficients, ‘right’. 
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So,  then  the  general  solution  of  that  equation  this  again  we  go  back  that

,  this  is the general  solution of it  is like this, theta  x is  equal to
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This is true for long cylinders, ‘right’, long fins cylinder, this is

true for long fins or we can also write with the fins with a finite length; for fins with

finite  length  we  can  also  write  the  solution  to  be  theta  x  is  equal  to

So,  anyone  of  these  solutions  can  be  utilized  provided  we  are  able  to  find  out  the

constants that is C1 and C2; obviously, to find out these two constants we need to have

minimum two boundaries. So, if we have two boundaries we can solve and get C1 and

C2, ‘right’. So, for determining the constants C1 and C2, two boundary conditions, one at

the fin base and the other one at the fin tip are required to be known. 

Now, customarily this is generally done that is why customarily the temperature at the

fin base that is x equal to 0 is considered to be known. So, it must be given that fin base,

if you remember we had this kind of pictorial view, so we had the fin like this, ‘right’.

So,  generally  this  was  our  x  is  equal  to  0  and  this  temperature  must  be  known

customarily say it could be T0 or something, ‘right’ or T base, Tb whatever as you would

like you can make it. So, it must be known that is the fundamental, that customarily or

generally the fin base temperature that is at x is equal to 0 and this is our direction of x, x

is equal to 0 the fin base is known, ‘right’. 
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If that be true then, fin based condition is like this that θ0 is T0 -Te where it is θ0, ‘right’, θ

at 0, that is the base theta at 0 that is x is equal to 0 it should be T0 -Te that is theta 0,

‘right’ where T0 is the inverse temperature and several different conditions may arise for

this solution. Such as, it may be a long fin, it may be negligible heat loss from the tip or

it may be convection at the fin tip, ‘right’. 

So, we can summarize that we have started with fin where the base is connected with the

fin like this, if this is the base and if this is the fin this is connected like this, ‘right’ and

this fin base customarily we are assuming that the temperature or the condition of the fin

base is known, ‘right’. 

We have seen that the general equation we as we have derived from conduction and

convection summation of conduction and convection equations, and substituting them

the temperatures in terms of theta and h b A k, h was heat transfer coefficient, P was

parameter, k is conductivity and A is the area; sectional area. 

If hP/Ak is taken as m and theta was taken as Tx-Te, Te is the environmental temperature,

then our general equation came to  and we said solution of heat can be

a many types. One was in the exponential form and the other two were maybe in terms of



tan  hyperbolic  or  cos  hyperbolic  and  sin  hyperbolic  as  well  the  other  one  is  cos

hyperbolic m rather L minus x and also the other one also m L minus x, ‘right’.

Now, we had two constants C1 and C2, and these two constants are to be determined.

Now, to determine these two constants at least two boundary equations are known and in

that we said one is conventionally or customarily taken as the fin based condition is

known or the temperature of the fin base is known and that we have defined to be that

theta at the fin base that is x equal to 0 is  θx is equal to 0 or it can be written as theta

within  bracket  0  is  equal  to  if  T0 is  the  fin  base  temperature,  T0-Te,  Te is  the

environmental  temperature.  So,  T0 being  the  fin  base  temperature  and  Te being  the

environment temperature; so, theta 0 becomes that at x is equal to 0 in terms of theta.

We said that solution of this can be for different cases, ‘right’. One could be for long fin,

another could be for fin with negligible heat loss from the tip and third one it can be a

convection at the fin tip, ‘right’.

So, let us after this summarization let us conclude today, and in the next class we will do

for long fin, fin with negligible, it is at the fin tip or convective heat on their condition.

All these three cases we will do in the next class, ok.

Thank you.


