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One Dimensional Heat Transfer Through Cylinders (Contd.)

 

Good morning,  so we were discussing about  the steady state  One Dimensional  Heat

Transfer in your cylindrical coordinate, ‘right’. So, it is lecture 12, ‘right’, so it was by

mistake  it  was  written  lecture  11,  so  now,  it  is  12,  ‘right’.  So,  we now go to  that

straightaway,  where we were solving the  problem. You remember,  we were given a

problem, so let us go directly to that.

(Refer Slide Time: 01:02)

That this problem was given energy is generated at a constant rate of E0 W/m3 in a solid

cylinder with a radius r is equal to ‘a’ maintains a constant temperature T1. Derive an

expression for one dimensional, radial, steady state temperature distribution T(r) and the

heat flux q(r), ‘right’.

So, this is to be done and also we are suppose to calculate for different E0, r and T1 what

is the center temperature, ‘right’. So, we had come to the level that we had integrated,

‘right’ and then, we had found out the two integration constant C1 and C2 by utilizing the

boundary conditions; two boundary conditions; one boundary was dT/dr is equal to 0 at r

is equal to 0, that is the it is similar to that there is no heat transfer at r is equal to 0,



‘right’ and the second boundary was at r is equal to a T(r) is equal to T1, ‘right’. So, with

these two boundaries, we found out C1 to be 0 and then the second boundary, where our

time was over, second boundary, we found out C2.

(Refer Slide Time: 02:51)

In the previous classes also I said whenever we are doing problems and you also please

check that the whether the values coming like this or not. There may be some mistake

calculation mistake or by as you have seen somewhere in some places by cut and paste

there are some mistake. 

So, mistakes can happen, so please do cross check and if it is different, then please bring

to our notice that it is not, ‘right’. Hopefully, it will not be, but still we cannot say that it
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will not be. So, please check, then if it is all right no problem, but if it is different, then

bring to our notice we shall definitely do the correction again and then tell you, ‘right’.

there is an internal energy generation, your question may come in mind that you said that

this is the axis and this is ‘a’, ‘right’; this is ‘a’, ‘right’ and this side is T 1 and this side is

also T1. sorry, this side is also T1. 

So, if this is true then and this T1 value is 150 oC, then how come this T0 is 212.5, ‘right’?

So, that may be a question arising in your mind, but the thing is that here we have said

there is an internal energy generation. So, that is equivalent to 1×107 W / m3, ‘right’. So,

that is why the temperature distribution has become like this that here 150 sorry; here it

was 150; rest to 212 and the other side is same because this is the mirror image, ‘right’.

So, this can happen because there is internal energy generation. So, this way if there is

internal  energy  generation,  we  can  solve  the  problem  by  analytical  method  and  by

integrating and then, putting the boundaries, we can solve it, ‘right’, so this is one way.

Now, let us look into the next.

A  hollow  cylinder  having  constant  thermal  conductivity  k  is  maintained  at  uniform

temperature T1 and T2 at the inner surface r at r is equal to ‘a’ and at the outer surface at r

is equal to ‘b’ respectively. Derive an expression for the one dimensional steady state

temperature distribution T(r) in the cylinder.  Also derive an expression for the radial

flow radial  heat flow rate capital  Q through the cylinder over a length H. Derive an

expression for the thermal resistance of a hollow cylinder of length H, ‘right’ and you



remember that in the some previous class, we said also that to solve any problem please

read at least twice, so that you first time you whenever you are reading.

So,  that  time  only  you  can  make  what  we  what  is  given  and  what  we  done,  but

subsequently on the second time be sure that this is given and this is to be done, so that is

fundamental. So, it here also it is like that a hollow cylinder having constant thermal

conductivity k is maintained at uniform temperatures T1and T2, at the inner surface at r is

equal to ‘a’ and the outer surface at r is equal to ‘b’ respectively.

Derive an expression for the one dimensional steady state temperature distribution T r in

the cylinder as well. Derive an expression for the radial heat flow rate capital Q through

the cylinder over a length H and also derive an expression for the thermal resistance,

‘right’; for the thermal resistance of the hollow cylinder of length H, ‘right’. Now, if we

remember, we had said earlier that if you have; if you have a hollow cylinder like this,

‘right’ that is what is said. So, this is the axis; that means, if we take this side that is good

enough to say the other side. 

So, if we; that means, here the one radius is given that is at ‘a’ and the other radius is

given at ‘b’. The same is true on this two sides also, this is ‘a’ and that is ‘b’, ‘right’. So,

this means if we take only this one side, then this side has can be eliminated ‘right’. So,

to do that what we can do? Here, we draw it again perhaps we have drawn that it appears

to be like this and this is b and this is sorry rewritten, this is b and this was a, ‘right’; this

is a and this is b. So, the net this one is b minus a, ‘right’. So, b minus a is the thickness

through which the heat is flowing, either this way or this way depending on what is the

temperature.

Now, the temperature given is also here it is say T1 at r is equal to a. So, here it is T1 and

here  it  is  T2,  ‘right’,  then  and  there  is  no  internal  energy  generation.  Now,  if  you

remember in Cartesian coordinate, we said if there is no a internal energy generation,

then the solution becomes easier because then you can utilize the electrical resistance

concept also or equivalent to thermal resistance concept, ‘right’. 



So, from the resistance concept, we can write we can solve it like this; we can solve it

like this that this is the probable solution is 

T(r) is equal to T2 not T1, So, if these

be true, then we can say that integrating between that integrating the two integrations 
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Then  if  this  be  true,  we  have  2  boundaries  and  we  can  solve  it  like  the  boundary

conditions given are 

So, by I mean what we did we subtracted equation 2 from equation 1, ‘right’. So, we are

equation  1  which  subtracted  from  equation  2  that  is  why  it  became .

Therefore, C1 is known now we can substitute anywhere either in 1 or 2, this value of C 1

and we can get the value of   So, C2 ln becomes this becomes,

‘right’ like that and we can we can say that C2 has become like this.
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So, this on rearrangement again, it is coming
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So, we have multiplied by 2 π a H both in the numerator with b and a, so it goes up. This

is what we have explicitly made according to our future goal that we want to bring it to

the tune, as we have shown delta T by R is Q and delta T, we have said T1 - T2, but are

we  as  now  coming  to  this  that  this  is  equal  to  that  R  is  T/kAm,  ‘right’.

Am called log mean area, ‘right’; Am is the log mean area. So, R is 

Am is the log logarithmic area or mean area, thickness is t; small t. Though, small t is

generally denoted for time, but in many cases where time is not t because here it is time

independent. So, that is why t is taken as the thickness, in many cases t is also taken as

thickness and not only the time. Either time or thickness normally this is these are the

two connotations used.

So, t is the thickness which is b minus a, that is thickness of the cylinder. So, we can

write R= T/ kAm and Am we have already written, ‘right’. So, again we have come to the

end of the class. So, here we have seen today that we are able to do both for this solid

cylinder  analytical  solution  and  for  the  hollow  cylinder,  we  have  done  the  not  the

analytical solution, again it is of course, I cannot say it is analytical solution, but not like

that it is with respect to the thermal resistance concept.
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And with the thermal resistance concept, we have found out and shown that you know

anything is equal to delta T/R or driving force this is called driving force by resistance,

‘right’. Any parameter which can be written as driving force by resistance; driving force

in this case is temperature this is delta T and resistance R that also you have shown,

‘right’. Hopefully, you will go through and in the next class we will do some problem

solutions, ok.

Thank you.


