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Lecture - 10
One Dimensional Steady State Heat Conduction (Contd.)

Hello. So, good morning today again we are continuing that One Dimensional Steady

State Heat Conduction equation. We were solving problems and through h the solution

of the problems we are coming across more and more how to solve different problems

with different boundary conditions, ‘right’. So, now, let us go to another. So, this again

one dimensional steady state heat conduction continuation lecture number 10.
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So, we come to this that problem. Let us know how consider a case where energy is

generated at constant rate of E0 W/m3 in a slab of thickness L having constant thermal

conductivity k.

The boundary surface at x is equal to 0 is insulated that is under adiabatic condition.

And, that at x is equal to L dissipates heat by convection with a heat transfer coefficient

h into a fluid at a temperature Te. Derive expressions for the temperature distribution

T(x) and heat flux q(x) in the slab.



Calculate the temperature at the surface x is equal to 0 and x is equal to L under the

following conditions; L is 8 millimeter, k is 15 W/mºC, E0 is 10×107 W/m3, h is 5000 W/

m2ºC and Te is 120ºC.

So, if we can solve this one also, but since here you see that internal energy generation is

present. Since, internal energy generation is present we cannot use thermal resistance

concept, ‘right’. Had there been no internal resistance generation, we could definitely

solve it with the thermal resistance concept, but it cannot be now, ‘right’. So, we have to

do analytical solution.

So, to understand you should read the problem number of times at least once or twice so,

that you understand the problem mentally. The problem again is saying like this let us

consider now a case where energy is generated at a constant rate of E0 W/m3. So, energy

generation is present.

In a slab of thickness L having constant thermal conductivity k. The boundary surface

now the boundary condition at x is equal to 0 is insulated; that means, you have some

insulation that is that can be said equivalent to be under adiabatic condition ‘right’ no

heat flow. And, that at x is equal to L dissipates heat so, other side is dissipating heat to

the boundary by convection with a heat transfer coefficient h into fluid at a temperature

Te, ‘right’. The derive expression for temperature distribution T(x) and heat flux q(x) in

the slab and, also we have to calculate the values of Tes perhaps values of calculate the

temperature at the surface x is equal to 0 and x is equal to L.

So, x is equal to 0 and L we have to find out the temperatures and we are given thermal

conductivity heat transfer coefficient length of the slab that is thickness or L0 to L. So,

thickness of the slab and internal energy and environmental temperature everything are

given. So, we can solve it, ‘right’.
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So,  in  this  case  the  thermal  resistance  concept  cannot  be  utilized,  because  there  is

internal energy generation.  The condition or the conduction equation for the constant

heat flux, or the constant not heat flux, for the constant heat generation, and constant

thermal conductivity has to be utilized. And, now we start with that where we ended with

you remember we said that the here it is steady state.

So, the moment it is steady state, so the right side becomes equal to 0. So, our equation

becomes equal to          and this is to be used for the

solution. And, boundary condition given one side it is given you remember one side it is

given that it is insulated. The moment the boundary condition is insulated we can say

that  
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.  And, now if  we apply the first  boundary

condition that is dT(x)/d x is equal to 0 at x is equal to 0 we get C1 is equal to 0.
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Because, this x is 0 so, this is 0 and dT(x)/dx is 0 from here. So, we get C1 is equal to 0.
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So, on second integration we get C 1 is equal to 0, ‘right’. Then
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So, this is for energy generation and this is for the heat transfer coefficient. So, we can

write that    . So, we have the solution we have found out the

temperature distribution T(x) and also you have found out the q(x) at any x which is E0x,

‘right’. Now, we can solve easily and find out the temperatures at x equal to 0 and that x

as to L 

Then, if we plot that the temperature distribution, then it comes like this you will see we

can show that here one and here another, ok.

So, our temperature distribution that can be written that can be shown that this is equal to

let us take this. So, here it was ok before that let us have the slab, this is the one part of

this slab and this is the other part of this slab, ‘right’. So, our boundaries are like that. So,

the temperature then becomes equal to some temperature here, ‘right’ and then it became

like this and then it became like that.

So, this is the temperature distribution which we are we have found out, ‘right’. So, this

is the solution which we have shown yeah this is the solution there this is 280 oh this was

this was constant. So, this started from here itself, ‘right’ E0, T0 was 493 here and then it
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dropped  to  this  280  and  outside  was  120,  ‘right’.  So,  this  way  we  can  resolve  the

problems ok.
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So, we let us take another problem a constant uniform heat flux q0 is introduced at the

boundary  surface  at  x  is  equal  to  0  of  an  iron  plate  of  thickness  L  with  thermal

conductivity k. From the other boundary surface at x is equal to L, heat is dissipated by

convection into a fluid at temperature Te with the heat transfer coefficient h.

Derive expressions for the surface temperatures T1 and T2 at the surfaces x is equal to 0

and x is equal to L respectively. What will be the surface temperature T1 and T2 if L is

2.5 centimeter k is 16 W/mºC, q05×105 W/m2, Te 40 degree centigrade and h 600 W/mºC.

 Say, here also you see that  the since there is  internal  energy generation we cannot

assume the thermal resistance concept, ‘right’. So, again we need to solve it analytically.

And again as you said to solve we have to read the problem and understand mentally and

then follow it accordingly.

So, I am reading the problem or reading out the problem once again a constant uniform

heat flux q 0 is introduced at the boundary surface at x equal to 0 of an iron plate of

thickness L with thermal conductivity k. From the other boundary surface at x is equal to

L heat is dissipated by convection into a fluid at  temperature Te with a heat transfer



coefficient  h.  Derive  the  expressions  for  the  surface  temperatures  T1 and  T2 at  the

surfaces x is equal to L and x is equal to L0 and x is equal to L respectively, ‘right’.

So, this means that our problem is saying that you have a plate iron plate and one side is

subjected to the boundary condition of second kind that is prescribed heat flux boundary

condition. And the other side is boundary condition of the third kind that is prescribed

convective boundary condition as well internal heat generation is there. So, you have to

do first  the analytical  solution and if  you then you have the temperature distribution

equation, you can easily find out what is the two phases temperatures that is T0 and TL,

‘right’.
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Here is that pictorially we can you can write it this is the iron slab and one side is heat

supply by q we what so, much watt per meter square this is that, ‘right’.

Internal heat one thing, internal heat generation that is why we have to read it, ‘right’.

So, here there is no internal generation is saying, but what did it saying that the flux. So,

though looking at the q; I mean that the internal generation of heat was mentioned? no it

is  not  mentioned  here.  So,  here  one  boundary  is  heat  flux,  another  boundary  is

convective boundary condition and the plate is there, ‘right’.



So, since there is no internal generation of heat as well since it is a steady state though it

is not said, but it is understood that there is a steady state. So, here we can use thermal

resistance concept, ‘right’.

So, that is what we are using W watt per meter square that is T 1 and T2 and a boundary

with convective boundary. So, with a fluid flow at Te temperature h as the heat transfer

coefficient 0 to L and it is in the X direction. So, Aq that is capital q quantity of heat is

coming all, ‘right’, q is heat flux, A is the area. So, Aq, q quantity of capital q quantity of

heat is coming and at the face this is T1 and within that resistance of the material, it is

coming to T2 and then getting dissipated to Te as the other side of the boundary. So, we

have two resistances, one is internal and another is this and this is supplied by the heat

flux.
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So, solution of heat can be that q is equal to capital Q that is

Now, to know the surface temperature say T 1, let us equate the first and last expressions

then we get     . And, then by equating the first and the third

expression T2 can be found out and this can be written as T2 is equal to q0 over h plus Te,

‘right’.
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So, if we have already found out T1 and T2 we can easily now calculate the numerical

values, because all others are given. So,

The material offers resistance of heat transfer. So, that you have to keep in mind that

material is offering resistance and depending on how much may resistance it is offering

the drop in temperature will be accordingly,  ‘right’. So, let us see whether any other

problem we have or not; we can say that we observed all types of problems. 

Once with the constant temperature boundary condition at left side, there is one side an

another constant temperature boundary condition on the other side, we have made the

analytical solution and we have also made the thermal resistance solution. So, the where

internal  energy was not  present,  internal  energy generation  was not  present  they are

thermal energy also we have solved.

In another case we have also seen both the sides are convective, this side convective, this

side also convective through boundaries and the material is getting conducted. So, we
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have solved that  analytically  in  both the  cases  once when there  was internal  energy

generation and in another case when there was no internal energy generation, ‘right’.

If internal energy generation is there we cannot solve it analytically, we cannot solve it

by thermal resistance concept, but we have to solve it by analytical solution. So, we did it

by  analytical  solution  and  then  we  also  solved  when  internal  energy  was  not  there

through the thermal resistance concept.

And, third one we have done when a constant heat flux was supplied that one boundary

and the other boundary was by convective boundary condition and the in material  is

offering resistance. So, the temperature is dropping from one high one temperature to

another. So, whether it is how high or low all will depend on what kind of values you are

getting,  what kind of values you are assuming for the different  parameters  like,  heat

transfer coefficient like, heat flux like, you know conductivity like, your thickness of the

material or if there is internal energy generation.

So,  depending  on  the  values  which  you  are  choosing,  your  this  thing  will  also  be

accordingly,  ‘right’.  So,  with  this  let  us  conclude  with  thermal  concept  with  one

dimensional heat transfer coefficient. So, we thank you and thank you for the next class,

ok, we will meet in the next class.

Thank you.


