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  Music  Welcome to my course, Mine Automation and Data Analytics. Today, we will discuss 
hypothesis testing. For the last few lessons, you have seen that we debated the statistical model 
and probability. We are all trying to analyze the data and reach a fruitful conclusion. So, in 
Mine Automation, we expect a large amount of data about the different kinds of operations, 
other products, sensors, data, and so on. So here is the data we are getting, the expected data, 
some product specifications, or the machine when we are procuring. The company claims that 
this machine will serve you in this way. 

 

 When you are testing the efficacy of this machine, you are also measuring its performance. So, 
based on this measurement and the company's claim, does it fit with the expected prediction of 
the company that this machine will perform this way or a particular supply when you are 
ordering? The company is telling this that this small amount of error might be there, and you 
are checking and have observed whether the error is within that range. So, hypothesis testing 
is being used for this particular exercise. So today, in this lesson, we will discuss the basic 
framework of hypothesis testing, part 1. 

 

  So, in this lesson, we will discuss the concept of hypothesis testing, what hypothesis testing 
is, and the idea of size and the power of a test. Then, we will discuss the Neyman Pearson 
hypothesis testing paradigm, and then we will discuss different types of hypothesis testing 
composites. Lastly, we will complete this lecture with motivational examples for hypothesis 
testing. So hypothesis testing is all about testing the quality of some data and the product's 
quality, whether it is in line with the expectation, meeting the expectation, or deviating from it. 
So, to match with that, hypothesis testing is required. Here, we start with a straightforward 
example, the coin example that we have used several times, and most statistical books widely 
refer to this particular example. 



 

  Whether the coin we are tossing is head or tail, the expected outcome of this toss is a 50-50 
chance. So, based on observation, does this 50-50 chance prevail or something else? So, to 
establish the fact that the coin is fair, the coin is fair, which means the probability of getting a 
head or the likelihood of getting a tail is 0.5, or exactly 0.5, half. 

 

  So when the coin is unfair, it is not that the probability of coming head will be 0.5; it will not 
be like that. For an unfair coin, the likelihood of coming head might be 0.3, 0.2, 0.4, maybe 
0.6, maybe 0.7, like that. So, that is an unfair coin. The fair coin always has the chance that the 
probability of a head will come to precisely 0.5. So, to test this particular statement, is the coin 
we have fair or unfair? So, what do we have to do if this is my question, intention, and 
investigation? We have to toss the coin multiple times, and we have to note the result; we have 
to observe it and note the result.  And then, based on the observed data, the observed outcome 
that we got after several times we toss the coin, we have stated already, we have to analyze. 
Now, how would we test whether the coin is fair or unfair? So, there are mathematical 
techniques that test hypotheses.  So, in hypothesis testing, we come across two standard terms. 
One is the null hypothesis, and the other is the alternative hypothesis. 

 

 So, the null hypothesis H0 or H0 is a statement about the population parameter or the effect 
that is assumed to be valid unless evidence suggests otherwise. That is, it represents the status 
quo or a baseline assumption. So formally, the null hypothesis is denoted by H0 and is typically 
expressed as equality. For example,  H0 is equal to means H0 is mu is equal to 0.5 like that. 
The alternative hypothesis comes in a particular situation when we want to reach some new 
conclusion or make some new decision based on the observed outcome. That observed outcome 
suggests something new, and that new contradicts the null hypothesis, the null hypothesis 
statement. So, it represents what the researcher is trying to provide evidence for. So, this null 
hypothesis is crucial for the scientific and engineering communities to reach new conclusions 
and discover new truths about the phenomena that were unknown to us.  We have some 



preconceived or preliminary ideas, but the test and process suggest something else, which 
represents something new. 

 

 So, the alternative hypothesis always gives us some new insight into the process, the 
phenomena, and the object.  So, let us represent the hypothesis testing using the simple data 
we are discussing. That is the outcome of the head and tail, and we are tossing the head coin. 
The number of times we have observed now we want to test whether the coin is fair or unfair. 
So, let us decide whether the coin is fair. 

 

  So the null hypothesis is that p h0 e head equals 0.5, and the probability of coming head is 
0.5.  For a fair coin example, the alternative hypothesis is that the likelihood of a head is equal 
to 0.6. This is one of the most important statistical analysis methods we are using, and it has 
many applications, a broad area of applications in engineering problem simulation.  So, the null 
hypothesis is the testing we are conducting, representing the assumption to be tested. We 
assume that the coin is fair. The alternative hypothesis represents the researcher's claim or the 
possibility of an effect or difference, the new truth of this analysis. So, hypothesis testing aims 
to gather evidence from sample data to decide whether to reject the null hypothesis in favor of 
the alternative hypothesis. 

 

 So the thing is, if the data suggest strongly that it matches the alternative hypothesis, we then 
have to reject the null hypothesis, or else there might be a picture that we are not getting a 
substantial amount of data or observed data that we can convincingly reject the null hypothesis. 
Instead, we have to state and accept that condition k; under these circumstances, the null 
hypothesis is accepted and cannot be rejected like that. We are so accepting or rejecting the 
null hypothesis. So, for example,  is a coin fair or unfair? So suppose we toss a coin three times; 
the possible outcome is head,  then again head, then again hate possibly or head, then head, 
then tell, or so and so forth.  So, there are eight possibilities of sequence. 

 

 So, for some outcome now,  let us state our problem. For some outcomes, we will accept the 
null hypothesis that is H0 or H0 or others; for others, we will reject the H0. So, let A be the set 
of all outcomes for which we accept the null hypothesis, which is H0. So, every acceptance of 
set A corresponds to a test; it must match the test result. So, another concept that we want to 
delete is a test's size and power. 

 

 This is a fundamental concept for hypothesis testing, and we must understand it in more detail.  
So metric 1 is the significance level, also called the test size, and the alpha denotes it. Here is 
the type 1 error that we are subdividing into two parts: the type 1 error and the type 2 error. So, 
the type 1 error is that we reject the null hypothesis when the null hypothesis is true. So the 
size of the test that is alpha is the probability of type 1 error, probability of type 1 error; this 
kind of error that the null hypothesis is true, but we are rejecting it. 

 



 What is the probability? That is similar to the probability of rejecting a null hypothesis when 
the null hypothesis is true. Another is metric 2, which is the power of the test, which is one 
minus beta. So, the type 2 error is that we accept the null hypothesis when the alternative 
hypothesis is true. We accept the null hypothesis when the alternative hypothesis is true. So the 
beta is the probability of type 2 error is equal to the likelihood of accepting the H0 null 
hypothesis when the alternative hypothesis is true, or the power is one minus beta is equal to 
the probability of rejecting the null hypothesis when the alternative hypothesis is true. 

 

 So these are the two representations of the size and power of the hypothesis testing: alpha and 
one minus beta.  So, let us compute the size and power of the unfair coin example. So here, the 
H0, the probability of a coming head, is 0.6. So, the likelihood of H0 is 0.5, and the probability 
of the alternative hypothesis, that is, the probability of coming head, is 0.6. So we toss the coin 
three times. So this is the total sample space head, head, head, head, head, head and tail, then 
head, tail, head,  tail, head, head, tail, head, tail, head, tail, tail, tail, tail, tail, tail, tail,  total 
eight number of possibilities in the sample space. So if acceptance of set A is null,  the 
acceptance of set is null. 



 

 So, we always have to reject the null hypothesis. We have to because it will not match. So, in 
that case, alpha is equal to 1, and beta is equal to 0.  The acceptance of set A is the same as this 
total outcome. Then, we always have to accept the null hypothesis. 

 

 So, in that condition, the alpha is 0, and the beta is 1. Now, another example of the same 
problem: if the acceptance of set A is out of this 8, we have taken only 6, out of this total 8, we 
have taken only 6 of this that is from this to this. So, we have removed the head,  head, and tail 
on this left side. So if the acceptance of set is this A, then alpha is the probability of A 
complement provided the likelihood of a coming head is 0.5, is two by 8 or 0.25, and beta is 
the probability of A for the head chances of the future head is 0.6. So that is 0.72 in total. So, 
the value alpha is called the level of significance of the test, and usually, we set in advance that 
this level of relevance is your probability and your chance. We have commonly chosen this 
value alpha is equal to 0.1, 0.05, and 0.005. So, these are the most famous values we use to test 
the hypothesis.  So, what is the Neumann-Pearson paradigm of hypothesis testing? So here, H 
naught is a null hypothesis on the distribution of x, and H a is the alternative hypothesis.  Now, 
the test is defined by an acceptance set A. So if the sample falls in A,  accept the null hypothesis; 
otherwise, reject the null hypothesis. So, the two errors are type 1 errors, rejecting the null 
hypothesis when the null hypothesis is true. 

 

  Type 2 error accepts the null hypothesis when the alternative hypothesis is true, and the 
accurate metric, which is the size of the test alpha, is equal to the probability of rejecting the 
null hypothesis when the null hypothesis is true. The power one minus beta equals the 
probability of rejecting the null hypothesis when the alternative hypothesis is true.  Type of 
hypothesis testing. So, this is the simple hypothesis testing. We have the composite hypothesis 
testing. So, let us discuss this first with simple hypothesis testing. 

 



  A hypothesis that completely specifies the distribution of the sample is called a simple 
hypothesis. For example, tossing the coin's probability of a coming head is 0.5, and the 
likelihood of a future head is 0.8  we defined. So, it precisely pinpoints the phenomena and 
their correctness. 

 

 For the normal distribution mu comma, in 3 samples, we are now telling mu is equal to 1, mu 
is equal to minus one, etcetera. So, this is a simple null versus a simple alternative.  So, this is 
one example of simple hypothesis testing.  Now, let us see composite hypothesis testing. A 
hypothesis that does not specify the distribution of the sample is called a composite hypothesis. 

 

  So, the example coin toss. So null is the probability of a coming head is 0.5, and the coin is 
fair. That is simple. Alternatively, the likelihood of coming head is not equal to 0.5; the coin is 
unfair; it is a composite. 

 

 The standard distribution mu comma three samples.  So null mu is equal to 0, and some effect 
is not present. An alternative,  mu, is greater than 1, and the effect is present, which is 
composite. So this is the picture versus null hypothesis versus the composite null versus the 
composite alternative.  And also simple null versus simple alternative. 

 

  So, type of hypothesis testing. So here we have given you the figures for three kinds of tests. 
This is one tail test that is left tail. This is also a one-tail test on the right tail and a two-tail test 
on both sides. So, the shaded region is the rejection region. The shaded region is the rejection 
region. 

 



  So for the right tail, one tail test when the null hypothesis mu equals C.  So, for the right tail, 
mu is more significant than C, and for the left, mu is less than C; for the two-tail test, mu is not 
equal to C.  So, in these two cases, we have known or unknown variance. And here, for this 
example, the expectation of x for this variable of x, x1, x2, x3 is mu, and the variance is sigma 
square. So, these are the data from the table. This is basically for different levels of alpha for 
0.01,  0.05, and 0.1. So, for a 99% confidence level alpha, that is 0.01. For the left tail test here,  
z is minus 2.33. Here, the z is plus 2.33, and for the two-tail test, it is plus minus  2.55 or 2.57 
or, in a greater degree, approximately 2.55.  For the 95% confidence, alpha is equal to 0.05. 

 

 Similarly, the z for the left tail test is minus 1.65 for the proper tail test plus 1.65; for the two 
tail test,  the critical value is between minus 1.96 and 1.96. For the 90% confidence level that 
is 0.1,  alpha is equal to 0.1, we have a left tail test minus 1.2, which is plus 1.2, and in between 
minus plus minus 1.65 is basically for the two tail test.  So, when we tested one sample, we had 
a known variance. So, the sigma equals C, and the null hypothesis is H0. So the right tail test 
H alternative A,  sigma is more significant than C. The left-tail test t is a sigma less than C; for 
the two-tail test, the alternative hypothesis is that the sigma is not equal to C.  Let us compare 
with the mean for the two samples where the expectation for one is mu 1, the other expectation 
is mu two, and the variance for the first one is sigma 1 square and the second is sigma 2 square. 

 

 So, the testing to compare the means null hypothesis H0, mu 1 is equal to mu 2,  alternative 
mu 1 is not equal to mu two. For the variance, sigma 1 equals sigma 2; the alternative 
hypothesis is that sigma 1 is not equal to sigma 2.  The goodness of fit testing. So, this concept 
is essential for the model and how your model fits the data, and this is called the goodness fit 
of testing. So, does the sample follow a specific distribution? So, if the distribution is following, 
then it will fit into the model.  So, for the integer sample space Xi of 0, 1, 2, is it the distribution 
Poisson?  Is the distribution normal for the continuous sample Xi from minus infinity to 
infinity? Based on the data, its pattern, whether it fits with the model, represents the goodness 
of fit testing. 



 

 One of the most popular methods is the chi-square goodness fit of testing. Observation. So, in 
all examples, the question is reasonably posed in a statistical hypothesis testing framework. So, 
in most cases, the null hypothesis or the alternative hypothesis is composite, and in all cases, 
the confidence of the testing is very, very important. So, how do we quantify this confidence?  
So, with the help of an alpha value concept or a notion called a p-value, it quantifies confidence. 

 

 The p-value is the probability value, defined as the probability of getting a result that is either 
the same or more extreme than the actual observations. The p-value is the marginal significance 
level within the hypothesis testing that represents the probability of occurrence of the given 
event. So, the p-value is used as an alternative to the rejection point to provide the minor 
significance at which the null hypothesis would be rejected. And if the p-value is small, then 
there is more substantial evidence in favor of the alternative hypothesis. 

 

 So, let us discuss this one example. This example is familiar to mining engineers and those 
working in the industry. Let's assume a construction firm will procure many cables that the 
company has guaranteed to have an average breaking strength of at least  7000 pounds per 
square inch PSI. So, to verify this claim, the company procuring this material has decided to 
take a random sample of 10 cables to determine their breaking strength. So, they will then use 
the result of this experiment to ascertain whether or not they accept the cable manufacturer's 
hypothesis that the population mean is at least 7000 pounds per square inch. So, a statistical 
hypothesis is usually a statement about a set of parameters of a population distribution, and it 
is called a hypothesis because it is yet to be known whether or not it is true. 

 

 We are trying to go closer to this conclusion but are still determining whether it is true or false. 
So, the primary problem is to develop a procedure for deciding whether or not the value of a 
random sample from this population is consistent with the hypothesis or with the 
manufacturer's claim.  So, for instance, consider a normally distributed population with an 
unknown mean value theta and known variance 1. The statement that theta is less than 1  is a 
statistical hypothesis we could try to test by observing a random sample from this population. 
The hypothesis has been accepted if the random sample is deemed consistent with the 
hypothesis under this consideration. Otherwise, we say it has been rejected. 

 

 So here, it is essential to note that in accepting a given hypothesis,  we are not claiming that it 
is true, but rather, we are saying that the resulting data appear to be consistent with it.  So, for 
instance, in the case of average population theta and 1, if the resulting sample size 10  has an 
average value of 1.25, then although such a result cannot be regarded as being evidence in favor 
of the hypothesis theta less than 1, it is not inconsistent with this hypothesis which would thus 
be accepted. On the other hand, if the sample of size 10 has an average value of 3, even though 
a considerable sample value is possible when theta is less than 1,  it is so unlikely that it seems 
inconsistent with this hypothesis, which would thus be rejected. Consider a population having 



a distribution of theta where theta is unknown, and suppose we want to test a specific theory 
about the theta. 

 

 We shall denote this hypothesis by H0  and call it a null hypothesis that H0 theta equals 1. So, 
if f theta is a normal distribution function with a mean of theta and variance equal to 1, there 
are two possible hypotheses.  One, as I said, H0 is theta is equal to 1, or H0 is equal to theta 
less than equal to 1.  So, the first of these hypotheses states that the population is average, with 
a mean of 1 and a variance of 1. Whereas the second state is H0, here theta is less than equal 
to 1; it is usually with variance one and means less than or equal to 1. 

 

 So, for case 1 a, when it is true, specify the population distribution. In the case of b, H0 theta 
less than equal to 1, the null hypothesis does not. So, a hypothesis that, when accurate, 
completely specifies the population distribution is called a simple hypothesis, and one that does 
not is called a composite hypothesis. So, the first is the example of the simple hypothesis that 
H0 theta is equal to 1, and the second one, H0 theta less than equal to 1, is the composite 
hypothesis.  So, suppose now that to test a specific null hypothesis H0, a population sample 
size of n, say x1 up to xn, is to be observed, and based on these n values, we must decide 
whether or not to accept the null hypothesis H0. 

 

 

 

 So, a test for H0 can be specified by defining a region C.  This C is in n-dimensional space 
with a provision that the hypothesis will be rejected if the random sample x1 up to xn turns out 
to lie in the C region and accepts otherwise.  So, the region C is called the critical region. In 
other words, the statistical test determined by the critical region C agrees with the null 
hypothesis if x1, x2, xn does not lie in the C region and rejects H0 if x1, x2, xn lies in the C 



region. So, for instance, a standard test of the hypothesis that theta the mean of the average 
population with variance 1 is equal to 1 as the critical region given by C is x1 up to xn for x 
bar minus 1 of the mod is more excellent than equal greater than 1.96 divided by root 2 bar n, 
n is the number of sample that is sample size.  

 

So, this test calls for rejection of the null hypothesis that theta is equal to 1 when the sample 
average differs from 1 by more than 1.96  divided by the square root of the sample size.  So, it 
is essential to note that when we develop a procedure for testing a given null hypothesis H0 in 
any test, two types of error can result.  The first type 1 error is said to result if the test incorrectly 
calls for rejecting  H0 when it is indeed correct. The second is called type 2 error result if the 
test calls for accepting a null hypothesis when it is false. 

 

 So, the objective of a statistical test of  H0 is not to explicitly determine whether or not H0 is 
true but to determine if its validity is consistent with the resultant data. Hence, with this 
objective, H0 should only be rejected if the resultant data is doubtful when the H0 is true.  So, 
the classical way of accomplishing this is to specify the alpha value and then require the test to 
have the property that whenever H0 is true, its rejection probability is never greater than alpha. 
So, the value alpha, the test's level of significance, is usually set in advance with commonly 
chosen values that are 0.1, 0.05, and 0.005.  

 

 So, in other words, the classical approach of testing H0 is to fix a significance level of alpha 
and then require that the test have the property that the probability of type 1 error occurring 
can never be more significant than alpha. So, these are the references. We will cover the next 
remaining concept in the next lesson. So, these are the things we have covered in this slide. 

 

  So, let me conclude in a few sentences. We first defined the null hypothesis test with the 
hypothesis testing and example. The size and power of the test,  then discuss the Neyman 
Pearson hypothesis testing paradigm, the type of hypothesis testing, standard test 1 sample, 
standard test 2 sample, and the goodness of fit testing. We have given examples with the 
significance level alpha with some examples.  Thank you. 

 


