Underground Mining of Metalliferous Deposits Professor Kaushik Dey Department of Mining Engineering Indian Institute of Technology, Kharagpur Lecture: 08 Determination of Cut Off Grade – 2

CUT OFF GRADE (Continued)

[6] Cost Analysis for One ton of ROM ore containing 0.55%.

	Cost/ROM
Mining	\$1.00
Milling	\$2.80
General and administration(15% of mining and milling)	\$0.57
Direct Production Cost	= \$4.37
Depreciaion	= \$0.87
Mill to smelter	=\$0.03
Smelting cost	= \$1.10

[1]

The copper price assumed \$1.00/lb

Furthermore, there is a by-product credit for gold, molybdenum,

etc. of \$1.77 per st of ROM of 0.55% cu.

Thus the gross value is -

 $GV = 8.56 \times \$1 + \$1.77 = \$10.33$

[2]

Assume, Mining cost is .\$1.00 per st. ROM

Assume, Milling cost is .\$2.80 per st. ROM

Other cost (mining and milling) @ 15% =\$ 0.15*3.80 = \$ 0.57

So Direct Production Cost = \$4.37

[3]

Depreciation is 20% of production cost = 0.2*\$4.37 = \$0.87

[4]

Transport cost from mill to smelter = 1.40 per ton of concentrate

= \$1.40/45.45 ton of ROM = \$ 0.03

[5]

Smelting cost = \$50 per ton of concentrate

= \$50/45.45 ton of ROM = \$1.10

[6]

Transport cost from smelter to refinery = \$50 per ton of cu in Blister

= \$50/233.1 ton of ROM = \$0.21

[7]

Refining cost = \$130 per ton of cu in Blister

= \$130/233.1 ton of ROM = \$0.56

[8]

Final shipment cost =\$0.01 per lbs of pure cu

= \$0.01 *8.56 ton of ROM = \$ 0.09

[9]

Other cost in smelter, refinery etc = 0.07 per lbs of pure cu

= \$0.07 *8.56 ton of ROM = \$ 0.60

NET VALUE = GV-TE

\$10.33 - \$7.83 = \$2.50

	Cost/ROM
Mining	\$1.00
Milling	\$2.80
General and administration(15% of mining and milling)	\$0.57
Direct Production Cost	= \$4.37
Depreciation	= \$0.87
Mill to smelter	=\$0.03

Smelting cost	= \$1.10
smelter to refinery	=\$0.21
Refining cost	= \$ 0.56
Final shipment	= \$ 0.09
General cost at plant	= \$0.60

Now the steps of the net value computation are outlined below for an ore containing 0.35% Copper. All of the costs and revenues will be calculated with respect to one ton of ore (2000 lbs).

Step 1. Compute the amount of saleable copper (lbs/st of ore).

[1] Contained copper (CC) in the ROM is

 $CC = 2,000 \ Ibs/st \times \frac{0.35}{100} = 7.0 \ Ib$

[2] Copper recovered by the mill (RM) is

$$RM = 7.0 \times \frac{80}{100} = 5.6 \ Ib_{RM} = 7.0 \times \frac{80}{100} = 5.6 \ Ib$$