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Approximate Solution of an Initial Value Problem 

 

Dear viewers, the title of my lecture is Approximate Solution of an Initial Value 

Problem. So far the differential equations considered by us had a general solution, in the 

case of an initial value problem, we obtained a unique solution by using the initial 

condition by at x naught equal to y naught in the general solution. 
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This is just one of the three possibilities that might occur in the general case, in the 

general case an initial value problem d y by d x equal to f x y where y x naught equal to 

y naught, may have no solution, precisely one solution or more than one solution. For 

example, let us consider the initial value problem mod of y dash plus mod of y equal to 

0, where y at 0 is given to be equal to 1. 

Now, this differential equation mod of y dash plus mod of y equal to 0 has only one 

solution that is y equal to 0, because the left hand side of this differential equation with 

the sum of two non negative real valued functions. So, there sum is 0 means y is equal to 

0 for all x, but this does not satisfy the initial condition, because the initial condition is y 

at x equal to 0 is 1, so this initial value problem does not have any solution. 
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Next, let us consider the initial value problem d y by d x equal to x, where we are given 

that y at x equal to 0 is 1. Now, this differential equation d y by d x equal to x, we can 

solve by using the method of separation of variables, we may write it as d y equal to x d 

x, then integrate both sides we will have y equal to half of x square plus c, using the 

initial condition y at x equal to 0 is equal to 1. We get the value of the constant c as 1 and 

so this initial value problem has only one solution, which is y equal to half of x square 

plus 1. 

If, we consider the initial value problem x y dash equal to y minus 1, where we are given 

y 0 equal to 1, then we can see that it has infinitely many solutions, you see if you take x 

equal to 0. Then y is equal to 1 follows from the differential equation x y dash equal to y 

minus 1 directly. So, let us take x naught equal to 0 divide by x, this differential equation 

and then write d y by d x equal to y by x minus 1 by x, we can write it as a linear 

differential equation of first order. 

And then find the integrating factor itself it will turn out that the integrating factor here is 

1 by x. We can multiply this equation by the integrating factor 1 by x and integrate with 

respect to x, we shall see that the solution is y equal to 1 plus c x for all x naught equal to 

0, but y equal to 1 plus c x, also satisfy the condition y 0 equal to 1. So, we can say that y 

equal to 1 plus c x is the solution of the given initial value problem for all values of x, 

where c is an arbitrary constant. 



 

Now, since c is an arbitrary constant, so the given initial value problem has infinitely 

many solutions and thus there arise the following two fundamental questions. 
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Existence of a solution under what conditions does an initial value problem of the form 

1, that is d y by d x equal to f x y, y at x naught equal to y naught have at least one 

solution. Number 2, uniqueness of the solution under what conditions does the initial 

value problem have an unique solution was the theorems that answers these two 

questions, that is existence of the solution and uniqueness of solution are known as 

existence and uniqueness theorems. 

The examples considered by us above of the initial value problems were, so simple that 

we could find the answers to the existence and uniqueness of the solutions just by 

looking at them or just by doing some simple calculations. But in the case of complicated 

differential equations that is the once, which cannot be solved by the elementary methods 

studied by us so far. The existence and uniqueness theorems, which we are going to 

study now will be of great practical importance. 
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Let us look at the existence theorem first, If f x y is continuous at all points x y in some 

rectangle R of the x y plane given by mod of x minus x naught less than a, mod of y 

minus y naught less than b and bounded in R. That is to say mod of f x y is less than or 

equal to k for all x y in R, you can see in this picture, this is the region R in the x y plane 

bounded by x equal to x naught minus a and x equal to x naught plus a and y equal to y 

naught minus b and y equal to y naught plus b. 
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Then, the initial value problem has at least one solution y x and this solution is defined at 

least for all values of x in the interval mod of x minus x naught less than alpha, where 

alpha is the minimum of a and b by k 
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So, that is to say, we can say that if the function f x y in the initial value problem is 

continuous in some region of the x y plane containing the point x naught y naught, then 

the initial value problem has at least one solution. So, let us now talk about the 

uniqueness of the solution, the uniqueness theorem gives us the conditions, the subs and 

conditions which f x y has to satisfy in order that the initial value problem has precisely 

one solution. 

So, if f x y and its first order partial derivative with respect to y, that is delta f over delta 

y are continuous for all x y in some rectangle R. That is mod of x minus x naught less 

than a, mod of y minus y naught less than b and bounded in r, that is to say mod of f x y 

less than or equal to k and mod of delta f over delta y less than or equal to m for all x y in 

r. Then the initial value problem d y by d x equal to f x y, where y x naught equal to y 

naught has at most one solution y x. 

Now, in view of the existence theorem that is theorem number 1, it follows that the 

initial value problem will then have precisely one solution. This solution is defined at 

least for all x in the interval mod of x minus x naught less than alpha, where alpha is the 

minimum of a and b by k. The uniqueness solution of the unique solution of the initial 



 

value problem can be obtained by using the Picard’s iteration method, which we shall 

study little later. 
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Now, since d y by d x is equal to f x y, so mod of f x y less than or equal to K implies 

that mod of d y by d x is less than or equal to K, that is to say that the slope of any 

solution curve y x in the region r is at least minus K and at most plus K. And hence, a 

solution curve passing through the point P that is x naught y naught will lie in the region 

R bounded by the lines through P having slopes minus K plus K, now depending on the 

form of the region R there arise two cases. 
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In the case 1, when a is less than or equal to b by K, we will have alpha is equal to a 

because, alpha is the minimum of a and b by K. So, when alpha is equal to a, in this 

figure you can see that this is your solution curve, the solution curve lies in the region R 

bounded by these two lines having slopes K and minus K, L 2 has slope of K. While, L 1 

has minus K and their both pass through the point x naught y naught, the solution curve 

also passes through the point x naught y naught. 

So here, when alpha is equal to a solution exist for all values of x in the interval x naught 

minus a 2, x naught plus a. And, its slope is at least minus K and at most plus K as 

because, it lies in the region the shaded region, which is bounded by the two lines having 

slopes minus K and plus K. 
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In the case 2, when a is greater than b by K, alpha being the minimum of a and b by K, 

will imply that alpha is equal to b by K. So, here mod of x minus x naught less than 

alpha gives the solution curve lies in the region shaded region, which is from x naught 

minus alpha 2 x naught plus alpha that is x naught minus b by K 2 x naught plus b by K. 

And, the slope of the solution curve is at least minus K and at most plus K, L 1 has slope 

minus K while L 2 has slope plus K and the solution curve is passing through the point x 

naught y naught. 
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Now, let us study remark 1, the condition 2 that is mod of delta f over delta y less than or 

equal to 1 for all x y in R in the uniqueness theorem can be replaced by the weaker 

condition. Mod of f x y 2 minus f x y 1 less than or equal to m dash in to mod of y 2 

minus y 1, where x y 2 and x y 1 are any 2 points belonging to the region R, but this 

condition 3 is known as a Lipschitz condition. 

If a function f x y is such that mod of delta f over delta y is less than or equal to m, then 

it will always satisfy the Lipschitz condition. Because, by the mean value theorem we 

can write that mod of f x y 2 minus f x y 1 is less than or equal to some constant m dash 

times mod of y 2 minus y 1. So, thus we arrive at a stronger form of the uniqueness 

theorem, because there are many functions which do not possess a continuous partial 

derivative, but satisfy the Lipschitz condition for some constant m dash. Let us study the 

mod 2. If the function f x y is continuous, it is not sufficient to guarantee the uniqueness 

of the solution. 
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For example, let us consider d y by d x equal to 3 times y to the power 2 y 3, where we 

are given that y at x equal to 0 is 0 and the region R is given by mod of x less than 1, 

mod of y less than 1. 
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We can see here that f x y which is equal to 3 times y to the power 2 by 3 is continuous 

in the given region R and y 1 x equal to x cube and y 2 x equal to 0 are two different 

solutions of the differential equation for all values of x in R. Thus the differential 

equation d y by d x equal to 3 times y to the power 2 by 3 does not have a unique 

solution. 

And, this is because the function f x y which is 3 times y to the power 2 by 3 does not 

satisfy the Lipschitz condition in the region R. Since, f 0 y minus f 0 0 which will be 

equal to 3 times y to the power 2 by 3 divided by y minus 0 will be equal to 3 over y to 

the power 1 by 3, which is un bounded in every neighborhood of the origin. And origin is 

a point, which lies in the region R, therefore the function f x y does not satisfy the 

Lipschitz condition. 
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Now, let us study the Picard’s iteration method to obtain a unique solution of the initial 

value problem. This method gives us a sequence of approximate solutions of the initial 

value problem 1, which converges to the uniqueness solution unique solution y x of 1, by 

the Picard’s theorem which we shall state later on. The practical value of the Picard’s 

method is limited, because it involves integrations which may be complicated to obtain. 

We note that by integration the initial value problem d y by d x equal to f x y, where y at 

x naught is y naught may be written as y x equal to y naught plus integral x naught to x f 

t y t dt. Now, here the variable t in the integrant has been used, because x occurs as an 

upper limit of the integral here. Since, the unknown function y t occurs in the integrant 

on the right side of equation 5, equation 5 is known as an integral equation. 
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Then, a first approximation y 1 to the solution y x is given by y 1 x equal to y naught 

plus integral x naught to x, f t y naught t d t. So, the unknown function y t in the equation 

5 on the right hand side in the integrant is replaced by the known value of y that is y 

naught. And, we determine the first approximation y 1 x to the solution y x of the initial 

value problem. 

Second approximation y 2 is then obtained from y 2 x equal to y naught plus integral x 

naught to x, f t y 1 t d t. So, we use the value of y 1 x to determine the next 

approximation y 2 x and so on, we continue the nth approximation y n is then given by y 

n x equal to y naught plus integral x naught to x ft y n minus t d t. 
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In this way, we will obtain a sequence of approximations y 1 x, y 2 x, y 3 x and so on, y 

n x and so on, which converges to the solution y x of the initial value problem 1 in view 

of the following theorem of Picard. Picard's theorem states that under the conditions of 

theorems 1 and 2, the sequence 7 y 1 x, y 2 x, y n x and so on of functions y x given by 

equation 6 converges to the solution yx of the initial value problem. 
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Let us solve an initial value problem using Picard’s method we are given d y by d x 

equal to 1 plus y square where y at x equal to 0 is 0. So, if you compare this differential 



 

equation y dash equal to 1 plus y square is the standard form d y by d x equal to f x y, 

you find that f x y is equal to 1 plus x square, the initial condition y at 0 equal to 0 gives 

us x naught equal to 0 and y naught equal to 0. 

And hence, f t y naught the value of f t y naught is equal to 1 plus is equal to 1, therefore 

y 1 x is equal to y naught plus integral x naught to x, f t y naught d t which will be equal 

to integral 0 to x 1 in to d t and after integration we then have y 1 x equal to x. So, first 

approximation to the solution of d y by d x equal to 1 plus y square where y 0 equal to 0 

is x. The next solution, next approximation y 2 x is equal to y naught plus integral x 

naught to x, f t y 1 t d t y 1 t is equal to t, so f t y 1 t will be equal to 1 plus t square. 
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And therefore, y 2 x i the integral of 0 to x 1 plus t square d t which will give us x plus x 

cube by 3, so second approximation to the solution y x of the initial value problem is x 

plus x cube by 3. Next, we find y 3 x y 3 x is then y naught plus integral x naught to x ft 

y 2 t d t making use of the value of y 2 t as t plus t cube by 3, we have y 3 x as integral 0 

to x 1 plus t plus t cube by 3 whole square d t. After integration, we get the value of the 

third approximation y 3 x as x plus x cube by 3 plus 2 by 15 x to the power 5 plus 1 by 

63 x to the power 7, etcetera. 
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If the find exact solution of our initial value problem, it tells out that the exact solution of 

our initial value problem is y equal to tan x, see our initial value problem is d y over d x 

equal to 1 plus y square. So, we can use the method of separation of variables and write 

the differential equation as d y over 1 plus y square equal to d x integrate and use the 

initial condition y at 0 equal to 0. 
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We can see that y equal to tan x is the exact solution of our problem and we know that 

the McLaren’s series expansion of tan x is x plus x cube by 3 plus 2 by 15 x to the power 



 

5 plus 17 by 315 x to the power 7 and so on which is valid in the region mod of x less 

than pi by 2. That is the series converges in the interval minus pi by 2 less than x less 

than pi by 2. 

Now, we compare the third approximation y 3 x with the series that occurs in 9, we find 

that first 3 terms of y 3 x and the series in 9 are the same. The series in 9 converges for 

mod of x less than pi by 2 and so we may expect that our sequence of approximations y 1 

y 2 and so on converges to a function which is the solution of our problem for mod of x 

less than pi by 2. 

(Refer Slide Time: 20:17) 

 

These are the approximate solutions of our initial value problem y 1 x is equal to x, so 

we have this curve y 1 x equal to x y 2 x is equal to x plus x cube y 3 and then we curve 

for y 3 x. So, these are approximate solutions of our initial value problem, which 

converge to the exact solution y equal to tan x of our initial value problem. 
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Picard's method can be extended to simultaneous equations and equations of higher 

order, let us first discuss Picard’s method for simultaneous differential equations of first 

order. Let us consider the two differential equations of first order d y by d x equal to f x y 

z and d z by d x equal to g x y z. 
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Next, we discuss Picard’s method for second order differential equations, let us consider 

the second order differential equation d square y over d x square equal to f x y d y b y d x 

with the initial conditions y at x naught equal to y naught and d y by d x at x naught 



 

equal to z naught. Now, if we put d y by d x equal to z then the second order differential 

equation d square y over d x square equal to f x y d y by d x gives rise to two first order 

simultaneous differential equations. 
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They are d y by d x equal to z and d z by d x equal to f x y z the initial conditions will be 

y at x naught equal to y naught and d y by d x at x naught equal to z naught gives us then 

d z at x naught equal to z naught. For this system of simultaneous differential equations 

of first order now can be solved as by the method which we have done explained earlier. 

Let us take an example on this method let us use Picard’s method to find an approximate 

value of y at x equal to 0.1, where we are given that y double dash plus 2 x y dash plus y 

is equal to 0 and y at x equal to 00 .5 y dash at x equal to 0 is 0.1. 
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So, let us now discuss the solution of this problem, let us take d y by d x equal to z, so 

that d square y over d x square is equal to d z by d x and thus the given equation reduces 

to d z by d x plus 2 x z plus y equal to 0, where y at x equal to 0 is 0.5 and z at x equal to 

0 is equal to 0.1. And thus, we have the problem to solve d y by d x equal to z and d z by 

d x equal to minus of 2 x z plus y, with the initial conditions y naught equal to 0.5 z 

naught equal to 0.1 at x naught equal to 0. 
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Now, by the Picard’s theorem, we have y equal to y naught plus integral x naught to x f x 

y z d x which is equal to 0.5 plus integral 0 to x z d x f x by z is equal to z here. And z is 

equal to z naught plus integral x naught to x g x y z d x z naught is equal to 0.1 minus 

integral 0 to x 2 x z plus y because the value of g x y z is minus of 2 x z plus y d x. 

And the first approximations to y and z are then given by y 1 equal to 0.5 plus integral 0 

to x z naught d x. We replace z by z naught here which is equal to 0.5 plus integral 0 to x 

the value of z naught is 0.1, so 0.1 d x this will give you y 1 equal to 0.5 plus 0.1 in to x. 

And, z 1 will be equal to 0.1minus integral 0 to x 2 x z plus y will become 2 x z naught 

plus y naught d x. So, this will be equal to 0.1 minus integral 0 to x 0.2 in to x because z 

naught is 0.1. So, 0.2 in to x y naught is 0.5. So, we have the integral of 0.2 in to x plus 

0.5 d x and after integration we will get the value of z 1 as 0.1 minus 0.5 in to x minus 

0.1 in to x square. 
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Second approximations are y 2 equal to 0.5 plus integral 0 to x z 1 d x which is equal to 

0.5 plus integral 0 to x. The value of z 1 came out to be 0.1 minus 0.5 x minus 0.1 x 

square in to d x, which is equal to 0.5 plus 0.1 in to x minus 0.5 in to x square by 2 minus 

0.1in to x cube by 3. 

Z 2 is equal to 0.1 minus integral 0 to x 2 x z 1 plus y 1 d x substituting the value of z 1 

and the value of y 1 and integration. After integration, we shall have the value of z 2 as 



 

0.1 minus 0.5 in to x minus 0.3 in to x square by 2 plus x cube by 3 plus 0.2 in to x to the 

power 4 by 4. 
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Similarly, we can find third approximations y 3 and y z 3, y 3 is equal to 0.5 integral 0 to 

x z 2 d x substituting the value of z 2 and integrating with respect to x. We will give us 

the value of y 3 as .5 plus .1 x minus 0.5 x square by 2 minus 0.1 x cube by 2 plus x to 

the power 4 by 12 plus 0.1 x to the power 5 by 10. 

And z 3 as 0.1 minus integral 0 to x 2 x z 2 plus y 2 d x substituting the values of z 2 and 

y 2 here. We will get after integration 0.1 minus 0.5 in to x minus 0.3 x square by 2 plus 

2 point 5 x cube by 3, 6 plus 1 by 12 x to the power 4 minus 2 x to the power 5 by 15 

minus 0.1 x to the power 6 by 6. And hence at x equal to 0.1the values of y 1, y 2 and y 3 

are y 1 is 0.51, y 2 is 0.507466 67, y 3 0.50745933 and thus y at 0.1 is equal to 0.5075 

correct up to 4 decimal places. 



 

(Refer Slide Time: 27:35) 

 

Now, we will discuss some numerical methods to find an approximate solution of an 

initial value problem. The differential equations that occur in the practical problems are 

so complicated that the methods which we have discussed earlier may not be applied to 

them or they are if even, if we find solutions of those differential equations by the known 

methods are the elementary methods. The formulae are so complicated that one often 

prefers to find numerical solutions of the differential equation. 

So, we will be discussing the two methods numerical methods for finding an 

approximate solution of the given initial value problem given initial value problem. We 

shall assume that the initial value problem has a unique solution in an interval containing 

the point x naught. Let d y by d x be equal to f x y y at x naught equal to y naught the 

methods that we are going to discuss that is Euler’s method and the improved Euler’s 

method are known as step by step methods. 

We start with an initial value of y, that is y naught at x equal to x naught and then find an 

approximate value of y, that is y 1 at x equal to x naught plus h that is x 1. In the second 

step, we find an approximate value of y that is y 2 at x equal to x 2, which is x naught 

plus 2 h, h is the step size and at each step we use the same formula to determine an 

approximate value of y, so these methods are called step by step methods. 

Let us say y equal to g x be the solution of this initial value problem, in some interval 

containing x naught and let us say x 1 x 2 x n be equidistant values of x in this 



 

neighborhood. Let us take x i equal to x naught plus i h, so these values are equally 

spaced with step size h, then in this method we approximate the curve of solution of the 

initial value problem by a polygon, whose first side is tangent to the curve at x equal to x 

naught. 
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By the Taylor’s series y at x plus h is equal to y x plus h y dash x plus h square by 2 

factorial, y double dash x plus and so on, which can be written as y x plus h in to f x y. 

Because, d y by d x is equal to f x y and so we have h in to f x y plus h square by 2 

factorial d square y by d x square that is y double dash x, it becomes d by d x of f x y and 

so on. 

Now, when h is the step size h is small, we can neglect the terms containing h square and 

higher powers of h and we thus get an approximate value of y at x plus h as y x plus h f x 

y. So, using this approximate formula, we can compute the first approximate value of y 

at x naught plus h that is x 1. 

We compute the approximate value y 1, y, y naught plus h f x naught y naught, which 

approximates y at x 1 that is y at x naught plus h. Next, we compute y at x naught plus 2 

h, that is we compute y 2 from y 1 plus h, f x 1 y 1 which approximate y at x 2, that is y 

at x 1 plus h or you can say y at x naught plus 2 h. 
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Now, this is geometrical interpretation of this method, you can see here that this is 

solution curve of the given initial value problem at the point x naught y naught this is the 

tangent to the curve, whose slope is given by f x naught y naught. We have d y by d x is 

equal to f x y, so the slope of the tangent is at x naught is f x naught y naught and this is 

your step size h at the point x equal to x naught plus h, that is x 1 the value of y 1 is 

given by this y 1 and the actual value of y at x equal to x 1 is this 1. 
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So, there is an error here, this is the error at the first stage y at x naught plus h minus y 1 

that is the error here. And then in the next step x 2 we then continue along the straight 

line which passes thought the point x 1 y 1 and has slope f, x 1 y 1. So, then when we 

compute y 2 from y 1 plus h times f x 1 y 1, this is our y 2 by the actual value of y at x 

equal to x 2 is this, so there is an error here origin this is the error in the next stage. 

Continuing in this manner, we then obtain y n equal to y n minus 1 plus h f x n minus 1 y 

n minus 1, where n is equal to 1 2 3 and so on, this is called Euler method or Euler-

Cauchy method. Now in the Taylor series which occurs in 10, we consider only the 

constant term and the term containing the first power of h, because we have neglected all 

the terms which contain h square and higher powers of h, so this method is called a first 

order method. The error in this method is quite significant unless h is small, since we 

have neglected all terms containing h square and higher powers of h, the truncation error 

in this method is at each step is of order capital order h square. 
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Now, in addition to this truncation error, there are round of errors as well in this method 

which may affect the accuracy of the values y 1, y 2, y 3 and so on. The practical value 

of the Euler’s method is limited, but due to its simplicity, it is helpful for understanding 

the basic idea of the improved Euler’s method, which we shall be discussing now. 
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Let us, before we discuss improved Euler’s method, let us take an example on Euler’s 

method, say let us solve d y by d x equal to x plus y, where y 0 equal to 0 for 0 less than 

or equal to x less than or equal to 0.8. By taking h equal to 0.2 and h equal to 0.4 uses 

using Euler’s formula method and let us compare the results, for h equal to 0.2. We have 

the formula Euler’s formula y n plus 1 equal to y n plus 0.2 in to x n plus y n, that is the 

value of f x n, y n, f x, f x y here is x plus y, so f x n, y n is x n plus y n. 

Now, if you write this odd ordinary differential equation as a d y by d x minus y equal to 

x, you can see that this is the first order linear differential equation. And, we can then 

find its integrating factor and multiply this by the integrating factor and integrate with 

respect to x. It follows that y equal to e to the power x minus x minus 1 is the exact 

solution of this problem making use of the initial condition y 0 equal to 0. 
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Now, here we are tabulated the values of y 1, y 2, y 3, y 4 for x equal to 0.2, 0.4, 0.6, 0.8, 

when we take h equal to 0.2. And then we have also tabulated the values of y for x equal 

to 0.4 and 0.8, where we have taken h to be 0.4 and then we have compared the errors in 

the two cases. 

Now, you can see that when x, when n is 0 that is we have x naught 0.0 y naught is equal 

to 0.00 and the value of 0.2 into x n plus y n is this and then we get using the Euler’s 

formula the value of y at x equal to 0.2 as 0.000. Next, we can calculate 0.2 in to x 1 plus 

y 1, which is 0.040 we can get the value of y 2 that is y at 0.4 as 0.040. 

Similarly, y 3 that is y at 0.6 we get as 0.128 and y at 0.8, we get as 0.274 and when we 

calculate the exact values of y, from the exact solution of the initial value problem y 

equal to e to the power x minus 1. We see that y at x equal to 0 is given by 0.000 y at 0.2 

is 0.021 y at 0.4 is 0.092 y at 0.6 is 0.222 and y at 0.8 is 0.426. 

These are the errors in which occur, when we compute the values of y by using the 

Euler’s formula taking h equal to .2. So, at x equal to 0 the error is 0 at x equal to 0.2, the 

error between the approximate value and the actual value is 0.021, the error in y 2 is 

0.052, the error in y 3 is 0.094. The error in y 4 is 0.152 and when we take h equal to 0.4 

we see that y at 0.4 comes out to be 0, while y at 0.8 comes out to be .160. 



 

These are the values of y which we have found for y at 0.4 from the table 2, y at 0.4 is 

0.040 and y at 0.8 is 0.274 and the errors the difference between the two values of y here, 

the value of y at 0.4 is 0 here it is 0.040. So, the difference is 0.040 and here will be 

difference in the values of y is 0.2 7 4 minus 0.160 that is 0.114. 
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Now, since the error is equal to capital order h square, in this method changing the step 

size from h to 2 h, implies that the error is multiplied by 2 square that is 4, see here we 

have taken first h equal to 0.2 and then we have taken h equal to 0.4. So, we have change 

the step size from h to 2 h, now changing the step size from h to 2 h means that the error 

is multiplied by 2 square that is 4. But, since when we take the step size 2 h, we need 

only half of the steps that when we take the step size as h. The error when only be 

multiplied by 4 by 2 that is 2 and hence comparing the corresponding approximations 

with step size as h equal to 0.2 and 2 h equal to 0.4, we find that they differ by 0.04 for x 

equal 0.4 and 0.11 4 for x equal to 0.8. While the errors in y 2 and y 4, actually are 0.052 

and 0.152. 
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And thus, we see that the approximate solution gets better and better that is closer to the 

exact solution as we reduce the size of h, but the process is not very rapid. And hence, 

we study a modification of this method known as improved Euler’s method. 
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Now, if we take more terms in the Taylor series in the equation number 10 in to account, 

it lead us to numerical methods of higher order and precision, but the computation of f 

dash and f double dash becomes complicated. So, our aim is now to avoid their 

computations and replace it by computing f for a suitable chosen auxiliary value of x y, 



 

the method is called as improved Euler method or improved Euler-Cauchy method 

sometimes it is also called as Heun's method. 
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So, now let us study improved Euler’s method, in this method at each step first we 

compute the auxiliary value y n plus 1 star equal to y n plus h f x n y n. And then we 

determine the new value of y that is y n plus 1 the formula y n plus h by 2 in to f x n y n 

plus f x n plus 1 y n plus 1 star, now let us study geometrical interpretation of this 

method. 

In the interval x n to x n plus half h, the solution curve is approximated by the straight 

line through x n, y n whose slope is f x n, y n and then we continue along the straight line 

with slope f x plus 1, y n plus 1 star in the interval x n plus half h to x n plus h. You can 

see that in this formula y n plus 1 equal to y n plus h by 2 in to f x n, y n plus f x n plus 1 

y n plus 1 star, we can direct it in to 2 parts, y n plus h by 2 f x n, y n. 

So, that is the value which we get by taking this straight line through x n, y n whose 

slope is f x n, y n in the interval x n to x n plus half h at x n plus half h. The value of y 

will be from this stated line will come out to be plus h by 2 f x n, y n and then we 

continue along the straight line, whose slope is f x n plus 1 y n plus 1 star in the interval 

x n plus half h to x n plus 1 and that will give us the value of y n plus 1. 
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Let us, see this figure for n equal to 0, this is the solution curve of the initial value 

problem and this is the point x naught y naught. This is the tangent to the curve at the 

point x naught y naught because the slope of the tangent to the curve at the point x 

naught y naught is d y by d x at x equal to x naught which is f x naught y naught. 

So, in the interval x naught to x naught plus h by 2, we get the value of y 1 star from here 

this is y 1 star and then we continue along the straight line this one, whose slope is at f x 

1 y 1 star. In the interval x naught plus h by 2 to x naught plus h that is x 1 and then at x 

equal to x 1 this gives us the value of y that is y 1. So, there is an error in the improved 

Euler’s method in computing the value of y at x equal to x naught plus h. 
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In this method the equation y n plus 1 star equal to y n plus h f x n, y n is called the 

predictor while the equation y n plus 1 equal to y n plus h by 2 in to f x n, y n plus f x n, 

plus y n plus 1 star is called the corrector of y n plus 1. So, it is called a predictor 

corrector method. 
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Let us consider an example on this method using improved Euler’s method solve d y by 

d x equal to x plus y, y 0 equal to 0 for 0 less than or equal to x less than or equal to 1 by 

taking h equal to 0.2. Taking h equal to 0.2 we will have y n plus 1 star equal y n plus 0.2 



 

x n plus y n here f x y is x plus y. So, f x n, y n is x n plus y n and y n plus 1 will be y n 

plus h by 2 that is .2 by 2, f x n, y n that is x n plus y n, f x 1, y n plus 1 star that is x n 

plus 1 plus y n plus 1 star. 

And then we have y n plus .1 and then x n, y n plus 1 is star is y n plus 0.2 x n plus y n. 

So, we put that value here and we see that we have 1.2 in to x n plus y n and then x n 

plus 1 plus y n, x n plus 1 is x n plus h that is x n plus .2. So, we get y n plus 1 as y n plus 

0.22 in to x n plus y n plus 0.02. 
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This table gives us the values of y corresponding to the values of x with the step size h 

equal to 0.2. When n is 0 x naught is 0 y naught is 0 and we compute the value of .22 x 

naught x naught plus y naught plus 0.02 as 0.0200. We then get the value of y at x equal 

to 0.2 as 0.0200, y at 0.4 comes out to be 0.0884, y at 0.6 comes out to be 0.2158 y at 0.8 

comes out to be 0.4153 and y at 1.0 comes out to be 0.7027. 

The actual values of y are 0.214, 0.918, 0.2221, 0.4255, 0.7183, the error that occurs in 

computing the values of y using this method are 0 here this is 0.014, 0.0034, 0.0063, 

0.0102, 0.0156. So, you can see from the error that occurs here in computing the values 

of y that this method is better than the Euler’s method that we have discussed earlier. 
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Now, let us discuss the error in this method, the local error in the improved Euler’s 

method is of order h cube to prove this let us say f n cap is equal f x n, y at x n. If we use 

the Taylor’s expansion, we will find that y at x n plus h minus y at x n is equal to h in to f 

n cap this is f n cap, because h in to d y by d x at x n is f at x n by x n. So, we will have f 

n cap here plus half h square f n dash cap plus 1 by 6 h cube f n double dash cap and so 

on. 
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Approximating, the expression in the brackets in y n plus 1 equal to y n plus h by 2, f x 

n, y n plus f x n plus 1 y n plus 1 star. If, we approximate this expression inside the 

brackets by f n cap plus f n plus 1 and again using the Taylor expansion, we find that y n 

plus 1 minus y n is approximately half of h in to f n cap plus f n plus 1 cap. And when 

we use Taylor’s expansion here we will get half h f n plus f n cap plus h f n dash plus 

half h square f n double dash cap and so on, which will be equal to h f n cap plus half h 

square f n dash cap plus 1 by 4 h cube f n double dash cap and so on. 
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Now, we subtract this equation 12 from the equation 11 we will get the error as h cube 

by 6 in to f n double dash cap minus f cube by 4, f n double dash cap and so on, which is 

equal to minus h cube by 12 f n double dash cap and so on.. So, this is the error here is of 

the order of h to the power 3. Now, we have x n equal to x naught plus n h and thus the 

number of the steps over the interval x naught to x n, which is n is proportional to 1 by h. 

And therefore the global error in this method is of order h cube by h that is h square and. 

So, the improved Euler’s method is called a second order method. 

Now, in our lecture today we have discussed the numerical solution of an initial value 

problem, we discussed two methods here Euler’s method, improved Euler’s method in 

our next lecture. We shall discuss power series method for finding the solution of a 

homogeneous differential equation and then we will discuss the particular cases there 

that of the Linder’s equation and the Vermin’s equation that is all. 



 

Thank you. 


