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Dear viewers, today we shall talk about some more Applications of the Laplace 

Transformation. In my last lecture, we had discussed some applications of Laplace 

transformation like application of Laplace transformation to the problems in dynamics, 

then the application of Laplace transformation to a simple electrical circuit. We shall 

today discuss the application of Laplace transformation to bending of beams and then the 

application of Laplace transformation to problems in mechanics. We shall also discuss 

the application of Laplace transformation to boundary values problems like, how to find 

the solution of a heat conduction equation and how to find the application of a wave 

equation by using Laplace transformation. 

(Refer Slide Time: 01:27) 

 

So, let us begin with a problem on electrical circuit, let us find the current I t in the L C 

circuit, here we are considering only I t, I c, L C circuit, r is not there that is resistance is 

not there. We are assuming L to be of 1 Henry, C to be of 1 farad and with initial current 

0 and initial charge on the capacitor also 0. And we are given that v t is equal to t, when 



 
 

0 is less than t less than 1 and 0, otherwise v t means the electromotive source of voltage 

v t. 

Now, in this case of the given problem the governing equation will be L d i by d t plus q 

by C equal to E, but I we know is d q by d t. So, we get L d square q by d t square plus q 

by C equal to E, E is the E here, will be replaced by v that is v t, so and we are given that 

L is equal to 1 and C also equal to 1. So, L is equal to 1 and C equal to 1, let us put and 

we put v E equal to v t, but v t is equal to t when 0 less than t less than 1 and 0, otherwise 

so we can replace v t, we can write v t in terms of unit step functions as t times u naught t 

minus u 1 t. 

(Refer Slide Time: 02:46) 

 

So if we do that we will have the differential equation like this d square q by d t square 

plus q equal to t times u naught t minus u 1 t. Now, let us apply Laplace transform to this 

equation L of d square q by d t square, we know will be given by s square q bar minus sq 

0 minus q dash 0, then L of q is q bar and then we have Laplace transform of t into u 

naught minus Laplace transform of t into u 1 t. 

Now, let us substitute q 0 equal to 0 and then I 0 that is q dash 0 equal to 0, we will have 

s square q bar plus q bar equal to. Now, Laplace transform of t into u naught t is equal to 

e to the power minus 0 s into Laplace transform of t, because we know that Laplace 

transform of ft into u a t is e to the power minus s into Laplace transform of f of t plus a 

where a is equal to 0, so we get e to the power minus 0 s into Laplace transform of t plus 



 
 

0 that is t. And then, Laplace transform of t into u 1 t similarly will be e to the power 

minus s into Laplace transform of t plus 1 because here a is equal to 1. 

And, now simplifying this we have, then q bar equal to 1 over s square plus 1 Laplace 

transform of t is, we know is 1 by s square minus e to the power minus s multiplied to 

Laplace transform of t plus Laplace transform of 1 Laplace transform of t is 1 by s square 

and Laplace transform of 1 is 1 by s. So, we get q bar s 1 by s square plus 1, multiplied to 

1 by s square, minus e to the power minus s by s square minus e to the power minus s by 

s. 
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Now, let us take the inverse Laplace transform of this equation, left hand side will give 

us q and the right hand side using linearity, we will have q equal to L inverse of 1 over s 

square into s square plus 1 minus inverse transform of e to the power minus s over s 

square into s square plus 1 minus inverse transform of e to the power minus s over s into 

s square plus 1. 

Now, we know that the inverse transform of 1 over s square plus 1 is sin t, so inverse 

transform of 1 over s into s square plus 1, we can write as integral over 0 to t sin t d t, 

because we know that Laplace transform of integral over 0 to t ft d t is f s by s, where f s 

is the Laplace transform of f t. So, making use of that theorem we have inverse transform 

of 1 over s into s square plus 1 equal to integral 0 to t sin t d t and which is equal to 1 

minus cos t, now let us find the inverse transform of 1 over s square into s square plus 1. 



 
 

So, again making use of that theorem, where we have set that Laplace trans transform of 

integral 0 to t f tau d tau is equal to f s over s making use of that theorem again. We now 

have integral of how many in inverse Laplace transform of 1 over s square into s square 

plus 1 as integral 0 to t and then inverse Laplace transform of 1 over s into s square plus 

1, which we have found as 1 minus cos t. So, this will when we integrate this and put the 

limits we get the inverse Laplace transform as t minus sin t. 
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And then, let us apply second shifting theorem inverse Laplace transform of e to the 

power minus s over s into s square plus 1 will be equal to, then 1 minus cos t minus 1 

into u t minus 1, because we know that inverse Laplace transform of e to the power 

minus s into f s is equal to f t minus a into u t minus a. So, here a is equal to 1 and f s is 1 

over s into s square plus 1 whose inverse Laplace transform we have seen comes out to 

be 1 minus cos t, so by second shifting theorem we have inverse Laplace transform like 

this. 

And then, similarly in inverse Laplace transform of e to the power minus s over s square 

into s square plus 1 may be written it will be equal to t minus 1 minus sin t minus 1 into 

u t minus 1. And therefore, we will have q equal to t minus sin t minus t minus 1 minus 

sin t minus 1 into u t minus 1 minus 1 minus cos t minus 1 into u t minus 1. 
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Now, let us discuss the application of Laplace transform to a problem in mechanics, two 

masses M and small m free to move in a straight line are connected by a spring of 

stiffness lambda. At t equal to 0, when they are both at rest and the spring unstrained, a 

blow of impulse P is given to M in the direction towards small m. We have to find the 

motion of the mass capital M and the small m. 

So, let us let us say that let us say this is our spring a its natural length and x and y are 

the displacements of the mass capital M and these small m from their original positions 

at time t equal to 0 that is from their from the equilibrium position. So, at time t equal to 

0 the mass M is at distance x from the origin and this mass m is at the distance y plus a, 

where a is the natural length of the spring and y is the displacement of the mass m from 

its original position. 

Now, then by the hoops law it follows that the compression in the spring will be given by 

T equal to lambda times x minus y, because lambda is the spring when stiffness of the 

spring and x minus y gives us the compression. So, this will be the compression in the 

spring. 



 
 

(Refer Slide Time: 09:24) 

 

The equations of motion of M and a small m, will then the given by M x double dot will 

be equal to P delta t minus T. Because P the blow of impulse P is given to the cap bigger 

mass m to the capital to the mass capital M and so m; as the equation of motion for the 

cap mass m capital M will be M x double dot equal to p delta t minus T, while for the 

smaller mass m it will be m y double dot equal to T. 

And, now let us put the value of T equal to lambda times x minus y in these two 

equations, we will have M x double dot plus lambda times x minus y equal to p delta t, 

and m y double dot equal to lambda times x minus y, which we can write as m y double 

dot plus lambda times y minus x equal to 0. The initial conditions are at t equal to 0, x is 

0 y is 0 and both the masses were at rest, so x dash and y dash are also 0 x dash is the 

derivative of x that is d x by d t and y dash is d y by d t. 

Now, let us take the Laplace transform of this equation, so Laplace transform of this will 

be m times s square x bar minus s x 0 minus x dash 0 making use of the initial conditions 

x 0 equal to 0 x dash 0 equal to 0. We will have the Laplace after lap taking Laplace 

transform of this equation we shall have Ms square plus lambda times X bar minus 

lambda times Y bar equal to P times lambda P times l of delta t Laplace transform of 

delta t. 

Now, we know that Laplace transform of delta t minus a is equal to e to the power minus 

s, so taking a equal to 0, we get the Laplace transform of delta t as e to the power 0 as 



 
 

that is 1. So, we have the right hand side Laplace transform of the right hand side as P 

and the when we take the Laplace transform here, we get m times s square y bar minus s 

by 0 minus y dash 0, again y 0 is equal to 0 and y dash equal to 0 implies as implies that 

the lapla after taking Laplace transform of this equation 1 will have m s square plus 

lambda into Y bar minus lambda X bar equal to 0, where X bar denotes the Laplace 

transform of X and Y bar denotes the Laplace transform of Y. 
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Now, we multiplication by m s square plus lambda the second by lambda and then add 

this by doing this, we will be eliminating 1 variable that is Y bar and we shall have this 

equation in X bar. So, M s square plus lambda into m s square plus lambda minus 

lambda square into x bar equal to m s square plus lambda into P. 

We had a system of simultaneous equations in X bar and Y bar by eliminating 1 variable 

Y bar we got this equation in the variable X bar, which after simplification gives as X 

bar equal to m s square plus lambda over s square times s square plus lambda into m to 

the power minus 1 plus capital M to the power minus 1 into P by m M, which we call as 

equation number 2. 

And, we can write this further as X bar equal to P over M plus m into 1 over s square 

plus m into M to the power minus 1 over s square plus lambda times m to the power 

minus 1 plus capital M to the power minus 1, that is we break it into its partial fractions. 

And then, we take the inverse Laplace transform of this equation. So, inverse Laplace 



 
 

transform X bar gives x P over M plus m is a constant, inverse Laplace transform 1 over 

s square is t and then m into M inverse is a constant let us call lambda into m to the 

power minus 1 plus capital M to the power minus 1 as p square. So, that we have inverse 

Laplace transform of 1 over s square plus p square, which we know is sin pt over p. So, 

when we take the inverse Laplace transform of this equation, we get this where we have 

assumed that p square is equal to m to the power minus 1 plus capital M to the power 

minus 1. 
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Now, from equations 1 and 2 we then can also find Y bar, Y bar equal to lambda over s 

square in to s square plus lambda times m to the power minus 1 plus capital M to the 

power minus 1 into P over m into capital M, after breaking it into partial fractions. We 

will have P over m into capital M into m to the power minus 1 plus capital m to the 

power minus 1 into 1 over s square minus 1 over s square plus lambda times m to the 

power minus 1 plus capital M to the power minus 1. 

And, when we take the inverse Laplace transform of this equation, we get y equal to P 

over M plus m inverse Laplace transform of 1 over s square is t minus again here, we 

take p square equal to lambda times m to the power minus 1 plus capital M to the power 

lam minus 1. So, then inverse Laplace transform of this is sin pt over p. 
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Now, let us discuss the case of an elastic spring whose one end is fixed and from the 

other end is hung a mass m. So, such a problem is governed by this differential equation 

m d square y over d t square plus k y equal to F naught sin pt, where k is the spring 

constant and F naught sin pt is the driving force, because of this force at y is the 

displacement in the mass m at time t. 

And by hoops law, we know that the spring force will be k y, because k is the spring 

constant and y is the different displacement in the spring from the equilibrium position, 

so k y will be the spring force. So, resultant force will be F naught sin pt will be acting 

downwards while k y force will be acting upwards, so resultant force will be F naught sin 

pt minus k y and that will be equal to m into d square y by d t square. 
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Now, we are assuming that initially the mass is at rest in the equilibrium position, so we 

will have y 0 equal to 0 and y dash 0 equal to 0. And, when we take the inverse lap when 

we take the Laplace transform of the governing equation of motion of the mass m we 

have s square y bar s plus omega square into y bar s equal to K into p over s square plus 

p square, where we have assume that omega is equal to square root K by m and capital K 

denotes F naught over small m. 

So, when we solve this equation for y bar we will have y bar s equal to K into p over s 

square plus omega square into s square plus p square. Now, will bracket into partial 

fractions and then take the inverse Laplace transform in order to find the displacement of 

the mass m at time t. 
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So, let there are two cases one is if omega square is not equal to p square, then when we 

take the inverse Laplace transform after breaking into partial fractions, we get y t equal 

to K p over p square minus omega square into sin omega t over omega minus sin pt over 

p this case corresponds to no resonance. If, omega square is equal to p square, then the 

inverse Laplace transform will give us y t equal to K over 2 omega square into sin omega 

t minus omega t into cos omega t this is the case of resonance. 
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Now, let us study another problem of mechanics where we have two masses connected to 

three springs, we have and all the three springs have the same spring constant k the 

stiffness. So, here the governing equations of motion for the mass m, m 1 and the for 

mass m 2 are these two equations for the mass m 1 we have y 1 double dash minus k y 1 

plus k times y 2 minus y 1, where we have made use of the given value of m 1 that is m 1 

equal to 1 and for the mass m 2, which is again given to be equal to 1 we have the 

equation of motion as y 2 double dash minus k times y 2 minus y 1 minus k y 2. 

Now, when the because of the mass m 1, let us say at time t the displacement in the 

spring this first spring is y 1. So, I mean, so then by the k y 1 force that is the spring 

force will act upwards and will this mass m 1 will compress this lower spring, so then the 

and then this there is a displacement y 2 in this mass at time t, so the net resultant 

displacement will be in the mass m 2 will be y 2 minus y 1. So, for this lower spring k 

times y 2 minus y 1 will act upwards for the mass m 1, while for the mass m 2 k times y 

2 minus y 1 will act upwards and also k y 2 will act upwards. So, we have for the mass m 

1 the resultant force will be k times y 2 minus y 1 minus k y 1, while for the mass m 2 it 

will be k times y 2 minus y 1 minus k y 2 plus k y 2, which is acting upwards.  
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so we have put negative sign here, where k is the spring modulus of each of these springs 

y 1, y 2 are the displacements of the masses from their positions of static equilibrium, we 

are assuming that the masses of the springs and the damping is negligible. So, the initial 



 
 

conditions here are at t equal to 0 y 1 equal to 1 and at t equal to 0 y 2 is equal to 1, at t 

equal to 0 d y 1 by d y 1 y d t is equal to root 3 k and d y 2 y d t is equal to minus root 3 

k. 

Let us take now, the Laplace transform of both the equations of motion for the mass m 1 

and m 2. Then, we shall have for the mass m 1 we shall have s square y 1 bar minus s 

minus root 3 k minus k y 1 bar plus k times y 2 bar minus y 1 bar in the left hand side 

there we had y 1 double dot by d square y 1 over d t square. So, when we take the 

Laplace transform of that we have s square y 1 bar minus s y 1 0, y 1 0 is equal to 1 then 

minus y 1 dash 0 and y 1 dash 0 is equal to root 3 k. 

So, we have the left hand side after taking the Laplace transform like this right hand side 

we had k y minus k y 1 plus k times y 2 minus y 1, so when we take Laplace transform 

of the right hand side, we get minus k y 1 bar plus k times y 2 bar minus y 1 bar. And, 

when we take the Laplace transform of the second equation of motion that is the motion 

of the mass m 2, we have s square y 2 bar minus s y 2 0, y 2 0 is 1 plus minus y 2 dash 0, 

but the y 2 dash 0 is negative root 3 k. So, we have plus root 3 k here, equal to minus k 

times Laplace transform of y 2 minus y 1, which gives us y 2 bar minus y 1 bar minus 

Laplace transform of k times y 2 that is minus k y 2 bar. 

(Refer Slide Time: 22:22) 

 

And, when we eliminate the variable y 2 bar here, we get y 1 bar equal to s plus root 3 k 

into s square plus 2 k plus k times s minus root 3 k over s plus 2 k whole square minus k 



 
 

square and y 2 bar comes out to be s minus root 3 into k plus into s square plus 2 k plus k 

times s plus root 3 k over s square plus 2 k whole square minus k square. After breaking 

into partial fractions, we get y 1 bar equal to s over s square plus k plus root 3 k over s 

square plus 3 k and y 2 bar becomes s over s square plus k minus root 3 k over s square 

plus 3 k. 
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Now, let us take inverse Laplace transform of these two equations, they will give us the 

displacements of the masses m 1 and m 2 at a time t. So, y 1 t comes out to be cos root k 

into t plus sin root 3 k into t and y 2 comes out to be cos root k into t minus sin root 3 k 

into t. 
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Now, let us study application of Laplace transformation to deflection of beams, so let us 

say we are given a beam, which is kept along the x axis and it is of length L its 1 end is 

at x equal to 0 the other end is at x equal to L. And, let us suppose that the beams suffers 

a transverse deflection y x, which is produced by applying a vertical load to the beam say 

w x per unit length.  

Then, the deflection is given by these differential equation d 4 y over d x 4 equal to w x 

over E I for x varying from 0 to L, 0 less than x less than L. Here E is young’s modulus 

of elasticity for the beam and I is the moment of inertia of a cross section of the beam 

about the x axis. 
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The boundary conditions are if the beam is hinged or has sup simply supported ends, 

then at those ends y and y double dash are 0. If, the beam is clamped at both the ends or 

it has fixed ends then at those ends y and y dash are 0, now if the beam has a free end 

then at that end y double dash and y triple dash are 0. 
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Let us now study, an example of a beam of length L, which is clamped horizontally at 

both at both its ends and loaded at x equal to L by 4 by a weight capital W. We have to 

find the deflection y at any point and also the maximum deflection in the beam, so as we 



 
 

have seen the equation for the deflection of the beam is given by E I d 4 y over d x 4 and 

the weight this is the point load here W.  

So, we write the right hand side as W times delta x minus L by 4 it is applied at the point 

l by 4, so we write W in to delta x minus L by 4. The boundary conditions are because 

the ends of the beam are clamped, so the boundary conditions are y and y d y by d x both 

are 0 at the ends x equal to 0 and x equal to L. 
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When we take the Laplace transform of this equation for the deflection of the beam we 

will have, S 4 y bar equal to W over E I into e to the power minus L s by 4, because 

Laplace transform of delta x minus L by 4 gives you e to the power minus L by 4 into s 

and then plus s y 2 plus y 3, where we have made use of y naught and y 1 equal to 0 y 1 

denotes d y by d x at x equal to 0 y naught is y at x equal to 0, y 2 is the y double dash at 

x equal to 0 and y 3 is y triple dash at x equal to 0. 

Now, let us take inverse Laplace transform of this equation, so we will divide this 

equation by s to the power 4 and then take the inverse Laplace transform y bar is equal to 

W over E I to the power minus Ls by 4 over s 4. Then, the second term will become y 2 

over s cube, third term will become y 2 y 3 over s to the power 4. 

So, inverse Laplace transform of y bar is y, then w over E I is a constant, so we will write 

it like that and then inverse Laplace transform of e power L by 4 over s to the power 4. 



 
 

Now, we know that inverse Laplace transform of 1 over s to the power 4 is t to the power 

3 over 3 factorial that is 6. So, t cube over 6 is the inverse Laplace transform of 1 by s to 

the power 4, but here we will have to make use of the second shifting theorem, because 

we have to find the inverse Laplace transform of e to the power minus Ls by 4 over s to 

the power 4. 

So, we will get a here is L by 4, so we will get the inverse Laplace transform as x minus 

L by 4 raise to the power 3 over 6 into u times into u of x minus L by 4 unit step function 

of x minus L by 4. Then, we will have y 2 over s to the power the inverse Laplace 

transform of that will be x square over 2 factorial that is x square over 2 and here, we 

will have to find the inverse Laplace transform of L over s to the power 4, which is s 

cube by 6. 

Now, let us in order to find this is the deflection at any time t and at a distance x, where 

we have to still find the values of the unknown constants y 2 and y 3. So, for that we will 

have to make use of the boundary conditions at the end x equal to l we have, so for made 

use of the boundary conditions at the end x equal to 0 only. 

So, now let us, but we will have to somehow get rid of this unit step function, in order to 

find the values of y 2 and y 3. So, what we do is let us see what happens when we take x 

equal to L by 4, because the end x equal to L satisfies x greater than L by 4, so with if 

you take x to be greater than L by 4 will, you will be able to get rid of u of x minus L by 

4. 

And then, you can take the derivative of y with respect to x, so for x greater than l by 4 

we have y equal to 1 by 6 into W by EI into x minus L by 4 raise to the power 3, because 

when x is greater than L by 4 unit step function gives us value 1 and then 1 by 2 into y 2 

x square 1 by 6 into y 3 into x cube. 

Now, let us take the derivative of this. So, d y by d x of this equation we will gives us 1 

by 6 into W over EI in to 3 times x minus L by 4 whole square. So, we will after 

simplification we get the first term like this and then 1 by 2 into y 2 into 2 x, so second 

term after simplification gives y 2 x, third term after simplification will give us 1 by 2 

into y 3 into x square. 
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Now, let us put the in boundary conditions at the other end that is at x equal to L the 

boundary conditions are y and y dash are zeros at x equal to L, then we will get from the 

equations for y and y dash, will have these two equations where we have put x equal to 

L. 

So, we get these two equations and these two are linear equations in y 2 and y 3 one can 

solve them. They will give us the values of y 2 as 9 by 64 into W by EI into L, y 3 as 

minus 27 by 32 into W over EI. Using these values in the equation for y, we will have 

the deflection at any time t and at a distance x given by this equation, this gives us 

deflection at any point of the beam, now in order to find the maximum deflection of the 

beam. at the point of maximum deflection Y dash must be 0. 
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And now let us note that for x less than L by 4 here, we have for x less than L by 4 in the 

expression for y dash from the proof from y dash we shall have x is less than L by 4 the 

expression for y in the expression for y u x minus l by 4 will be equal to 0. So, for x less 

than l by 4 will differentiate that equation and get y dash as y 2 x plus 1 by 2 into y 3 in 

to x square, where after putting the values of y 2 and y 3 we get y dash as nine by 64 into 

W by EI into x in to L minus 3 x. And, from here we can see that when x is less than L 

by 4, L minus 3 x will never be equal to 0. 

So, y dash is never 0 for less than x less than L by 4 and therefore, maximum deflection 

cannot occur in this interval. Now, let us note check for 1 by L by 4 less than x less than 

L, here y dash will be given by 1 by 2 into W over EI x minus L by 4 whole square plus 

y 2 x plus 1 by 2 y 3 x square, because u x minus L by 4 will be equal to 1 for this 

interval. 

And after we put it equal to 0, we get and put the values of y 2 and after putting the 

values of y 2 and y 3 and equating y dash to 0 we get this equation from this equation. 

After simplification 1 will have 5 x square minus 7 L x plus 2 L square equal to 0, which 

can be factorized in to 2 factors like 5 x minus 2 L into x minus L and since x is not 

equal to L it is less than L this gives, you the value of x as 2 L by 5. 
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So, the maximum deflection of the beam occurs at x equal to 2 L by 5 and the deflection, 

then that is the maximum deflection y at x equal to 2 L by 5 is then given by W into this 

1 by 6 2 L by 5 minus l by 4 whole to the power 3 plus 9 by 1 28 into L 2 L by 5 whole 

square minus 9 by 64 2 L by 5 whole cube into 1 over EI or EI to the power minus 1, 

after simplification the value of this expression comes out to be 63 WL cube over 8000 

into EI. 

(Refer Slide Time: 34:14) 

 



 
 

Now, let us study 1 more example on deflection of the beam a beam of stiffness EI is 

simply supported at its ends x equal to 0 or at and x equal to L it carries a uniform load 

W per unit length from x equal to L by 4 to x equal to 3 L by 4 find the deflection y at 

any point. 

So, the we know that the deflection equation for the deflection of the beam is EI d 4 y 

over d x 4 equal to W x by W x is the load per unit length, in this case we are given that 

the beam carries uniform load W per unit length from x equal to L by 4 to 3 L by 4. So, 

W x the right hand side of this equation will be uh will be equal to w times u x minus L 

by 4 minus u x minus 3 L by 4  
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And therefore, and the boundary conditions for, because the beam is simply supported at 

both its ends, so y equal to 0 and y double dash equal to 0 at x equal to 0 and x equal to 

L. After taking the Laplace transform of the deflection of the beam, where we have seen 

that the right hand side is W times u x minus L by 4 minus u x minus 3 L by 4, so we 

have and make ma making use of these boundary conditions at x equal to 0, we get the 

Laplace transform of the deflection of beam as s 4 y bar equal to W over EI into e to the 

power minus Ls by 4 minus e to the power minus 3 s Ls by 4 over s plus s square y 1 

plus y 3. 



 
 

Since y naught and y 2 are 0, at x equal to 0 and therefore, after simplification y bar will 

be equal to W over EI, e to the power minus Ls by 4 over s to the power 5, e to the power 

minus 3 Ls by 4 over s to the power 5 y 1 over s square plus y 3 over s to the power 4. 
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Now, let us take inverse Laplace transform of this when we take inverse Laplace 

transform this equation we get y equal to 1 by 24, W over EI x minus L by 4 raise to the 

power 4 into u x minus L by 4 minus x minus 3 L by 4 raise to the power 4 into u x 

minus 3 L by 4 plus y 1 x plus 1 by 6 y 3 x cube, where we have made use of the second 

shifting theorem. 

Now, for x greater than 3 L by 4 we have y equal to 1 by 24 into W over EI, because u x 

minus 3 L by 4 will be equal to 1 while this will be equal to 0, this will be equal to 1 and 

all this will also be equal to 1. So, will have x minus L by 4 raise to the power 4 minus x 

minus 3 L by 4 raise to the power 4 plus y 1 x plus 1 by 6 y 3 x cube, we are going to 

find the values of y 1 and y 3. 

So, for that we will make use of the boundary conditions at the end x equal to L and that 

is why we have taken x to be greater than 3 L by 4 with y with this we can the replace 

the unit step functions by their values that is 1. And now, we can take the second 

derivative of this y double dash gives us 1 over 2 times W over EI x minus L by 4 to the 

power raise to power 2 minus x minus 3 L by power raise 3 L by 4 raise to power 2 plus 

y 3 x. 
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Putting the boundary conditions at the end x equal to L that is y equal to 0 and y double 

dash equal to 0, we get these two conditions equations which are again linear in y 1 and y 

3. So, we can solve them for the values of y 1 and y 3, y 3 comes out to be minus w L by 

4 EI while y 1 comes out to be eleven by 3 84 into w L cube by EI. Putting these values 

in the expression for y we get the deflection at any point x of the beam as this 1 by 24 W 

over EI x minus l by 4 raise to the power 4 u in into u x minus l by 4 minus x minus 3 L 

by 4 raise to the power 4 into u x minus 3 L by 4 plus y 1 x plus 1 by 6 y 3 x cube. 
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Now, we are going to study the inversion formula for the Laplace transform this we shall 

make use of why when we study the application of Laplace transform to the boundary 

value problems. So, let us say F s denotes the Laplace transform the function f x then F s 

will be equal to integral 0 to infinity ft e to the power minus s t d t. 

Now, let us multiply both sides of this equation by e to the power x s and integrate 

between the limits a minus i b and a plus i b we will have integral over a minus i b to a 

plus i b into f s I mean F s e to the power x s d s equal to a minus i b to a plus i b e to the 

power x s integral 0 to infinity ft e to the power minus s t d t d s. And when, you put in 

the right hand side s equal to a minus i b then d s becomes minus i d p the limits of 

integration for s change from a minus i b to a plus i b to b and minus b and we get this 

expression on the right hand side. 
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Or we will have integral over a minus i b to a plus i b F s e to the power x s d s as i e to 

the power ix minus integral over minus b to b e to the power minus i p x integral over 0 

to infinity e to the power minus at into ft e to the power i pt d t d p. Now, let us define a 

function g x as e to the power minus a x into f x where x is greater than or equal to 0 and 

0 when x is less than 0. Then, let us use the formula for the Fourier integral of f, let us 

recall that the formula for the Fourier integral of f at each point of continuity is f x equal 

to 1 over 2 pi integral over minus infinity to infinity e to the power minus psi lambda x 



 
 

integral over minus infinity to infinity ft e to the power lambda t d t d lambda, so let us 

apply this formula for the function g x. 
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So, then g x will be equal to integral g x will be equal to e to power minus x into f x 

equal to 1 over 2 pi integral over minus infinity to infinity e to the power minus i p x 0 to 

infinity and then e to the power minus a t into ft here the limits of integration from minus 

infinity to infinity are reduced to 0 to infinity, because g x is defined as 0 from minus 

infinity to 0. 

So, e to the power minus a t a t into ft in to e to the power i pt d t d p taking the limit of a 

minus i b to a plus i b F s e to the power x s d s that is this, so that is as b tends to infinity 

and using the equation 3, we get integral over a minus i infinity to a plus i infinity Fs e to 

the power x s d s as i e to the power i a x into 2 pi e to the power minus a x into f x. 
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Or we get f x equal to 1 over 2 pi i integral over a minus i infinity to a plus i infinity F s e 

to the power x s d s this is the inversion formula for the Laplace transform. Here the 

integral is being taken over the line a b, which is parallel to the y axis and is to the right 

of all the similarities in the s plane all the similarities of the fun a function F s into e to 

the power x s lie to the left of the line a b and r enclosed by this contour a b, a b d this 

contour, which consist of a b and the semi circle gamma. 

So, let us assume that there is a contour C, which consist of AB the line segment AB and 

a semi circle gamma as shown in this figure, then the integral 4 this integral 4 along AB 

is equal to integral over ABDA minus integral over BDA that is integral o a over ABDA 

from that, we subtract the integral over BDA in order to get the integral over AB.  
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We show that the integral over BDA that is the curved path that is the over semi circle 

tends to 0 as b goes to infinity the semi circle is of radius b and has centre at a. Let us 

show that if there exist positive constants capital K and small k such that mod of F s is 

less than k times b to the power minus small k for every point on gamma, which is 

described by s equal to a plus b e i theta pi by 2 less than or equal to theta less than or 

equal to 3 pi by 2, then limit of 1 over 2 pi i integral over gamma F s e to the power x s 

goes to 0 as b goes to infinity. 
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Now, a point on gamma for a point on gamma we can write s equal to a plus bi b e i theta 

or a plus b cos theta plus i b sin theta, because the gamma has center at the point a and its 

radius is b and theta here varies from pi by 2 to 3 pi by 2. Then, the modulus of 1 over 2 

pi i integral over gamma F s e power x s d s is equal to modulus of 1 over 2 pi i integral 

over pi by 2 to 3 pi by 2 e to the power x s that is a plus b cos theta plus i b sin theta into 

F s and then d s will give you i into d s will give you i into b into e to the power i theta d 

theta. 

So, now this is further less than or equal to this is less than or equal to e to the power a x 

into b this b we can write here, and then mod of i is 1. So, 2 pi integral over pi by 2 to 3 

pi by 2 integral then e to the power b x sin theta we have and mod of e to the power i b x 

sin theta is equal to 1. And then we have mod of F s into d theta and this is further less 

than K b to the power minus k plus 1 here we are making use of the condition that mod 

of F s is less than k times b to the power minus k. So, k times b to the power minus k 

plus 1, because of this b and then we have e to the power a x over 2 pi by 2 to 3 pi by 2 e 

to the power b x cos theta d theta. 
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And, let us now put this phi equal to theta minus pi by 2, then the previous integral 

replace is replaced by integral 0 to pi e to the power minus b x sin phi d phi and will be 

multiplied by Kb to the power minus k plus 1 e to the power a x over 2 pi. And here now 



 
 

we make use of a property of the definite integral because sin pi minus phi is sin phi, so 

we can write it as 2 times 0 to pi by 2 e to the power minus b x sin phi d phi. 

And, now let us make use of an equality which is well known we know that when 0 is 

phi 0 is less than phi less than pi by 2 sin phi over phi is greater than 2 over pi. And, so 

let us make use of that here, then this will be further less than K times b to power minus 

k plus 1 into e to power a x over pi integral over 0 to pi by 2 e to the power minus 2 b x 

phi over pi d phi. 

And when you evaluate this integral and substitute the limits it comes out to be equal to 

K times b to the power minus k e to the power a x over 2 x into 1 minus e to the power 

minus x b for x greater than 0 it clearly goes to 0 as b goes to infinity. Because, e to the 

power minus x b as b goes to infinity goes to 0 and b to the power minus k goes to 0 as b 

goes to infinity. 
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And thus f x is equal to limit of 1 over 2 pi i integral over c F s e to the power x s d s as b 

goes to infinity and from a residue theorem in complex analysis it follows that the value 

of this integral as b goes to infinity is some of residues of e to the power x s into F s at 

the similarities, which lie at the similarities of e to the power x s F s, which lie in the s 

plane and we have taken the line a b in such a way that all the similarities of e to the 

power x s F s lie to the left of it and are inside the contour. 



 
 

Let us find the inverse Laplace transform of this function of s, 2 over s minus 1 whole 

square into s square plus 1. Now, we can see that for large values of modulus of s this F s 

is asymptotic to 2 times s to the power minus 4, so and the poles of e to the power x s 

into F s poles are positioning the similarities of this function F s occur at s equal to 1 and 

s equal to plus minus i, at s equal to 1 we have a pole of order 2 and at s, s equal to plus 

minus i, we have pole of order 1 these concepts follow from the complex analysis. 
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So, therefore, the residue at this a pole double pole at s equal to 1 will be given by limit s 

tends to 1 d over d s of s minus 1 whole square into e to the power x s over F s, which 

after differentiating this we and we can find we can see that the differentiation comes out 

to be this. Now, let us take the limit of this as s tends to 1, so i just tends to 1 the limit of 

this is minus e to the power x plus x e to the power x. 

Now, let us find the residue at the simple pole s equal to i it is again by a formula from 

complex analysis is it limit s tends to i 2 times s minus i into e to the power x s over s 

minus 1 whole square into s square plus 1, which will be equal to 2 times e to the power 

ix over minus 2 i into 2 i if you put if you let i over s go to i the denominator becomes 

minus 2 i into 2 i, which is after simplification half of e to the power ix. Now, at s equal 

to minus i we again have a simple pole, so replacing i by minus i here we get the residue 

at the other pole that that is at s equal to minus i it comes out half of e to the power 

minus ix. 
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So now, f x is sum of residues of e to the power x s into F s, so we have the f x equal to 

minus e to the power x plus x e to the power x plus half of e to the power ix plus e to the 

power minus ix and we know that half of e to power ix plus e to power minus ix is cos x. 

So, the inversion formula for the Laplace transform gives us f x equal to e power x into x 

minus 1 plus cos x 1, can verify that f x is having this value directly by breaking F s the 

Laplace transform of f x the given function F s into its partial fractions and then using the 

known results that is the Laplace transforms of elementary functions, which we earlier 

done. So, from there also 1 can see that f x comes out to be this. 

So now, let us apply the Laplace inversion formula to the heat conduction equation, let 

us now determine the flow of heat in a semi infinite bar x greater than 0, when initially 

the bar we are writing it as a solid here, but we are considering a semi infinite bar here. 

So, when initially the bar is at 0 temperature and at t equal to 0 the boundary x equal to 0 

is raised to a temperature u naught and maintained at u naught. So, here we are given the 

initial condition that at t equal to 0 the temperature of the bar is 0 and we are given 1 

boundary condition that at x equal to 0 for all the time t uxt is equal to u naught. 
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And we know that, the heat conduction equation in one dimension is delta u over delta t 

equal to c square delta square u over delta x square, where x is greater than 0 and t is 

greater than 0. We are given the boundary condition and initial conditions s follows the 

initial condition is that t equal to 0 u is equal to 0 u denotes the temperature it raise the 

function of 2 variables x and t and we are given the boundary condition that at x equal to 

0 u is equal to u naught for all the time t. 

Now, let us multiply the partial differential equation by e to the power minus s t and 

integrate with respect to t from 0 to infinity and use the given initial condition that is at t 

equal to 0 u is equal to 0. Now, when you take the Laplace transform of the left hand side 

c square is a constants it will remain as it is delta square over delta x square x is 

independent of t. So, we will get after multiplying by e to the power minus s t and taking 

the integral from with respect to t from 0 to infinity, we will get delta square over delta x 

square of u bar. 

And then the right hand side will be Laplace transform of delta u over delta t, so that is s 

u bar x s t is replaced by s because we are integrating with respect to t and then minus u x 

0. So, this follows from the Laplace transform for derivatives, which we have earlier 

done. So, s u bar x s minus u x 0 and u x 0 is given to be 0 at t equal to 0 u is 0. So, right 

hand side becomes s u bar x s. 
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The second condition is that at x equal to 0 u is equal to u naught, so when you take the 

Laplace transform of that that is you multiply by e to the power minus s t and integrate 

with respect to t over 0 to infinity what you get is u bar equal to u naught by s where, 

when x is equal to 0. And, now the general solution of c square delta u square u bar over 

delta x square equal to s u bar this u bar is u bar axis is u bar equal to A into e to the 

power x root s by c plus B times e to the power minus x root s by c where A and B are 

functions of x. 

Now, let us we have to find a solution which remains finite as x tends to infinity and if 

that is the case, then we must have a equal to 0 otherwise e to the power x root s will 

tend to infinity as x goes to infinity. So, in order to find a finite solution or a solution, 

which remains finite as x may goes to infinity we must have A equal to 0. So, u bar 

reduces to u bar equal to b into e to the power minus x root s by c, now let us use the 

bound the condition that at x equal to 0 u bar is equal to u by s u naught by s this will 

give you B equal to u naught by s. 
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And so, u bar will be equal to u naught by s into e to the power minus x root s by c, when 

we take the inverse Laplace transform of this then inverse Laplace transform of u bar 

will be u, u naught is a constants it will remain as it is, then inverse Laplace transform of 

e to the power minus x root s by c over s is 1 minus erf x over 2 root 2 c root t in view of 

the result that is L inverse of e to the power minus c root s over s equal to 1 minus erf c 

over 2 root t. Now, where erf denotes the error function defined by erf x equal to 2 over 

root pi integral 0 to x e to the power minus u square d u. So, the solution of the given 

problem is u equal to u naught 1 minus erf x over 2 c root t. 
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Let us now, consider the case of an infinitely long string, which is semi infinitely long 

string at the end x equal to 0 of this string is at rest initially at t equal to 0 it is at rest the 

end x equal to 0 is given a transverse displacement ft here to find the displacement of any 

point of the string at any time t if the displacement y x t is bounded. 

So, we take we are giving an infinite this thing transverse displacement to these spring to 

the string at the end x equal to 0 and this is the differential equation, which governs the 

transverse displacement of a string that is delta square y over delta t square equal to c 

square delta square y over delta x square, where x is greater than 0 t is greater than 0 we 

are given that at x equal to 0 the displacement is 0, so y x 0 is equal to 0 and the string is 

at rest at the at t equal to 0. So, delta over delta t y x 0 equal to 0 and we are also given 

that y x t is bounded and at x equal to 0 y x t is equal to ft. 
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Now, let us take the Laplace transform of the given partial differential equation will have 

this equation after using the given a conditions it reduces to s square y bar equal to c 

square delta square y bar over delta x square y 0 t equal to ft gives you y bar equal to F s 

at x equal to 0 and y x t is bounded. So, y bar x s is also bounded these equation gives the 

solution uh as y bar x s equal to A e to the power x s by c plus B x e to the power minus 

x s by c. 
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Since y bar x s is bounded a must be 0 and b equal to F s in view of y bar equal to F s at 

x equal to 0 hence y bar is equal to F s into e to the power minus x s over c. Now, let us 

use the inversion formula for the Laplace transform, we have y equal to 1 over 2 pi i 

integral over a minus i infinity to a plus i infinity F s e to the power t minus x by c into s 

d s which is equal to f of t minus x by c. Now, in our next lecture we shall be doing the 

application of Fourier series to the solutions of heat and to find the solutions of heat 

conduction equation and wave equations that is we will be applying Fourier series 

method to the boundary value problems in one dimension case. 

Thank you. 


