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A welcome viewer, today’s topic is Laurent Series. Viewers, we have learnt that, a 

function f of a complex variable z can be represented as a power series, when the 

function is analytic in a domain. 
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Let us say d, in the domain d. We can draw a circle of radius R 1 centred at say z is equal 

to a. Then, we represent this function f of z in powers of z minus a. And we can say that, 

this series converges in and it is radius of convergence is R. And in this circle, there is no 

point where function is not analytic. But what happens, if the function is analytic at some 

points in this domain. Can we represent still, this function f z as a power series? So, this 

is the question we are going to answer today. Now, let us say we have a function f of z, 

which is analytic in two concentric circles c 1 and c 2, with centre at z is equal to a. 
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The idea here is that this function f z may not be analytic at some points, inside the 

bigger circle of radius R 1. Then, all those points can be enclosed in the circle smallest 

circle of radius R 2. And then it is the function will be analytic, throughout in this 

annular region. That is why we say, if f z is analytic on two circles c 1 and c 2 with 

centre at z is equal to a. 

And in other words, we can write it as, that function is analytic on z minus a is equal to R 

1. It is a circle of radius R 1 centre at z is equal to a. And another concentric circle, 

centred at the same point a and of radius R 2. And together with this, f z is analytic inside 

this annular region. 
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Then, f z can be represented as sum of these two series. The first series is in powers of z 

minus a and power n, this n is positive. While, in the second series, it is in powers of z 

minus a, n being negative. So, first series n varies from 0 to infinity. While, in the second 

series n varies from 1 to infinity. In the first series z minus a appear in the numerator. 

And here, it appears in the denominator. 

And with this, in the expanded form the function f z can be expressed as b nought plus b 

1 z minus a, plus b 2 z minus a square plus, and so on. And the second series, will look 

like as c 1 divided by z minus a, plus c 2 divided by z minus a square, and so on. Here 

the coefficients b n. They are expressed as 1 upon 2 pi i integral over c, a close curve and 

the integrand is f z star divided by z star minus a raise to power n plus 1 into d z star.  

Here, z star is a point on this close curve c. While, the coefficients c n in the second 

series. They are obtained as 1 upon 2 pi i integral over the close contour. And the 

integrand is z star minus a, raise to power n minus 1 f z star d z star. Here again, this 

point z star will lie on the close curve c. 
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Now, to prove this result. We consider the function f z as analytic inside this annular 

region. So, we consider a close curve c c star s. This outer circle in the anticlockwise 

sense and in a circle in the clockwise sense. And then we join these two circles by cut. 

And there are two lines parallel to each other. The one going in the forward direction, 

another in the backward direction. 

And accordingly, the c star will be, if we start from this point, will look like a close curve 

staring from this point, moving along this line. Then, moving along the outer circle in 

anticlockwise direction. Then, coming back to this point along this line, but opposite to 

this. And then moving along the inner circle in clockwise direction. So, this makes the 

curve c star. 

It is a closed curve. This being a cut and function is analytic throughout in this region. 

With this definition to c star, we can apply cos integral formula. And according to this, 

the analytic function f z in this domain is 1 upon 2 pi i integral over c star. And the 

integrand is f z star divided by z star minus z d z star, where z is any point inside this 

region, where f z star is analytic. And it is inside the closed curve c star. 

To simplify this expression, we consider c star, to be consisting of the four curves, c 1 

these two straight lines and c 2. So, expressing this c star in these four curves will have 

four such integrals, but integral corresponding to these two straight lines. They will 

cancel out each other, because the orientation of the curve is just opposite. So, we will be 



having only two integrals. One along this outer curve in anticlockwise direction. And 

another along this inner circle in clockwise direction. 

And because of this, will have a negative sign here. This is positive direction is taken as 

anticlockwise direction and the negative direction is taken as this clockwise direction. 

So, will represent f z in these two integrals. And accordingly, we write f z as sum of 

these two integrals I 1 plus I 2. Now, we consider c is simple closed path lying along this 

annular and z is a point on this. 

Now, we will not consider these two integrals along this curve or this curve. Rather we 

will consider these integrals along this curve. The idea is, you can contract you can 

shrink this outer circle to this, since there is no point, where function is analytic. So, 

integral along this curve is the same as integral on this curve. And similarly, you can 

expand this inner circle come to this circle. 

And since there are no points, where this function ceases to be analytic. So, you can 

expand this to this curve c. I call this curve as c. So now onwards, we evaluate these 2 

integrals on this curve c. 
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Now, to evaluate these 2 integrals, i will write 1 upon z minus z star s, 1 upon z star 

minus a minus z minus a by adding and subtracting a in the denominator. And then z star 

minus a is taken outside, and will have 1 minus z minus a divided by z star minus a. 



Now, on the integral I 1, where we are integrating over the outer curve c 1. One may 

notice that, z minus a divided by z star minus a, it is magnitude is less than 1. 

Because, z lies in the annular part and z star lies on the outer boundary, so z star will be 

far away than z. So, z minus a over z star minus a modulus is less than 1. So, if this is the 

case, then the integrand 1 upon z minus z star can be expanded in the, can be expanded 

by the geometrical series, as 1 over z star minus a into 1 plus z minus a over z star minus 

a, plus z minus a divided by z star minus a whole square and so on. 

So, here we have expanded this function in powers of z minus a divided by z star minus 

a, z minus a over z star minus a modulus being less than 1. So, this series is convergent. 

So, we are writing this integral. This part of the integrand 1 upon z minus z star s this. 

So, this will be substituted in the integral I 1. So, we multiply this series by f z star 

integrate over the curve c 1 and then multiply by 1 upon 2 pi i. 

This we do for each and every term. So, first term will give me 1 upon 2 pi i. And 

integrand is f z star over z star minus a d z star integrated over c, plus z minus a into 2 pi 

i. And then the integrand is f z star, z star minus a whole square d z star and so on. Here, 

we have assumed that, when we take integral of this, then we can actually integrating it 

term wise. So, it is this integral is an infinite series. And when we integrate, then 

integrand can be in a integrated term wise. Of course, we have not proved this so far, but 

at the moment we are taking it for granted. So, if we express, I 1 in this form. Then, these 

are the first terms. 



(Refer Slide Time: 11:47) 

 

And then after n terms remaining terms are represented as R n z, where R n z is z minus 

a raise to the power n plus 1 over 2 pi i, integral c f z star divided by z star minus a raise 

to the power n plus 1, into z star minus z into d z star. Now, as we have done in the case 

of Taylor series. This expression will tend to 0 as n will tend to infinity.  

And accordingly, I 1 will be 1 upon 2 pi i, into f z star over z star minus a d z star, plus z 

minus a divided by 2 pi i integral c f z star divided by z star minus a whole square d z 

star and so on. So, in this way, if we express this coefficient as b nought and this the 

second coefficient of, the coefficient in the second term is z minus a is this one and we 

represent it as b 2 and so on.  

So, I 1 will be b nought plus b 1 z in z minus a, plus b 2 into z minus a square, and the 

nth term being b n into z minus a raise to the power n and so on. So, this is an infinite 

series, R n z being tending to 0. Here the general term b n can be given by the formula, 1 

upon 2 pi i integral over the curve c and f z star divided by z star minus a into n plus 1 d 

z star. Here, I am writing the contour integral over c. Because, I am replacing c 1 by c, 

the expression is given earlier. 
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Then, we have to evaluate I 2. Now to evaluate I 2, which is 1 upon 2 pi i integral over c 

2 f z star over z star minus z d star, d z star. And here, I will consider z star minus a over 

z minus a magnitude is less than 1. Because, z this c 2 is the inner curve and z star minus 

a will be smaller than the point in the annulus region z minus a. So, z star minus a 

divided by z minus a modulus is less than 1. 

So, assuming this, I can expand 1 upon z star minus z the part of this integrand. As 1 

upon z star minus a minus z minus a and then z minus a can be taken out. And this will 

be minus 1 of 1 minus z star minus a divided by z minus a. So, this minus will be 

observed with I 2.  

And accordingly, if we expand it in geometric progression, we will have 1 upon z minus 

a into 1 plus z star minus a divided by z minus a plus z star minus a divided by z minus a 

whole square and so on. And, nth term is z star minus a divided by z minus a raise to the 

power n. And this series is a geometric series, which will be convergent under this given 

condition. 
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So, once we have done this, then we can again move. We can again proceed in the 

similar manner. That is, I multiply that expression by 1 upon by 2 pi i and f z star. And 

then integrate over the curve c 2. And, if you proceed in this particular manner will have 

I 2 is equal to 1 upon 2 pi i, and 1 upon z minus a will be taken out. And will have f z 

star d z star as the first term, plus in the second term. 

We can take, 1 upon z minus a square, outside the integral sign. Because, we are 

integrating, with respect to z star and this does not involve z star. So, this can be taken 

out and will have integrand of the second term is z star minus a into f z star d z star. And 

again, we have replaced this curve c 2 by c. So, this way we can have general term as 

this. And the remaining term are observed, in the remainder R n star z. The reminder 

term R n star z is written as this. 
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Now, the value of the integral is not, altered by replacing c 2 by c. This I have already 

explained. And then I 2 will be represented as, c 1 divided by z minus a, plus c 2 divided 

by z minus a square and nth term being z n, c n divided by z minus a raise to the power n 

and so on where the coefficients c 1, c 2, cn’s. They are given by this general formula, 

that is c n is equal to 1 upon 2 pi i, integral over c. And, the integrand is z star minus a 

raise to the power n minus 1, if the value l and f z star, d z star. So, this is my c n and 

then R n star z. As we have expressed it as this. And from here, one may notice that f z 

star divided by z minus z star modulus is less than M, f z being analytic on the curve c 2. 
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And modulus of R n star z will be less than modulus of 1 upon 2 pi i, which is 2 pi. And 

then z modulus of z minus a raise to power n plus 1 multiplied by z star minus a raise to 

power n plus 1 into M times L. And L happens to be 2 pi. So, we will have this integral 

is M times z star minus a divided by z minus a raise to power n plus 1. And since this 

term is less than 1, this modulus is less than 1.  

So, as n tending to infinity, this term will become smaller and smaller and ultimately. R n 

star z will tend to 0 as n tending to infinity. With this, we have been able to represent the 

function f z in powers of z minus a. And in this series, we have both positive powers of z 

minus a, as well as negative powers of z minus a. So, let us illustrate this, with the help 

of an example. 
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So here, we have to find the Laurent series for the given function f z is equal to 1 upon 1 

minus z square with centre at z is equal to 1. One may notice that this function f z has 

this function f z is not analytic at z is equal to 1. We can express this function f z in the 

form 1 upon 1 plus z into 1 upon z minus 1. And I have taken minus, outside to make it 1 

minus z square. So, this function is not analytic at z is equal to 1. 

As well as at z is equal to minus 1. But, since we have to find Laurent expansion about z 

is equal to 1. So, we are concerned about, it is analyticity, at z is equal to 1. Now, this is 

already in powers of z minus 1. So, if we express 1 upon 1 plus z in powers of z minus 1. 

Then, we are through. So, to express this an powers of z minus 1, we rewrite 1 upon 1 



plus z as 1 divided by 2 plus z minus 1. And then two can take out and will have 1 minus 

z minus 1 divided by 2 raise to the power minus 1.  

And assuming z minus 1 divided by 2 is less than 1, or z minus 1 modulus is less than 2. 

Then, this term will be, less than it is modulus will be less than 1. And then we will be 

able to expand it in power series, in powers of z minus 1. So, to do this, we write, 1 upon 

1 plus z is equal to half of minus minus times z minus 1 divided by 2 raise to the power 

n, n takes values from 0 to infinity. So we have expressed this, in compact form. And this 

way, we will simplify it to be n is equal to 0 to infinity summation minus 1 raise to the 

power n 2 divided by n plus 1, and here we have z minus 1 raise to the power n. 
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And this gives me, the f z representation of 1 upon 1 minus z square s minus summation 

n is equal to 0 to infinity minus 1 raise to the power of n, 2 raise to the power n plus 1 in 

the denominator. And z minus 1 raise to the power n, multiplied by 1 upon z minus 1. 

So, this is in powers of z minus 1, the region of convergence of this series is modulus z 

minus 1, lying between, 0 to 2.  

Because, there is another point which is at a distance 2 from z minus 1, where function 

ceases to be analytic and that point is minus 1. Therefore, we consider modulus of z 

minus 1 is less than 2 modulus of z minus 1 is greater than 0 is will take care. That z is 

equal to 1 is not included in the annulus, where the function needs to be analytic. And 

only then Laurent series will be applicable. 



So, the real of convergence of this series is modulus of z minus 1 lying between 0 and 2. 

That is, what has been shown here, now at z is equal to 1 and z is equal to minus 1. The 

given function is not analytic. And that is, why we enclose this point by this z minus 1 

modulus greater than 0 this circle. And this is the point, where function is not analytic. 

So, this distance is 2. So, in this annulus region function is a represented by this series. 

And, this is a region of convergence. 
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In the outer part, when z minus 1 is greater than 2. There is no singular point outside this. 

And we can write down to upon z minus 1, modulus is less than 1. And in this region, we 

can expand 1 over 1 plus z in this form. Here, 2 upon z minus 1 is less than 1. So, we can 

again expand in power series and will have 1 upon z minus 1. 

Summation n is equal to 0 to infinity. And here, we have minus 2 upon z minus 1 raise to 

the power n. And the series will be minus 2 raise to power n divided by z minus 1 raise 

to power n plus 1. Summation will take values from 0 to infinity. So, this series is 

convergent in the disk, when z minus 1 is greater than 2. So, we have one representation 

inside the z minus 1 less than 2. And this is the representation when z minus 1 is greater 

than 2.  

So, we have two representations and the Laurent expansion. This way is given as minus 

1 over z minus 1 multiplied by z plus 1 is represented by this power series in this region 



z minus 1 lying between 0 to 2 and when modulus of z minus 1 is greater than 2. Then, 

we got this expansion. 
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So this is one example. In the next example, we consider function f z as z plus 1 divided 

by z minus 1. When we notice that this is analytic at z is equal to 0. It is not analytic at z 

is equal to 1. And function can be expressed in power series about z is equal to 0. 

Because, a function is analytic at z is equal to 0. This will be the Taylor series 

representation of this function.  

So, f z will be given by 1 minus 2 over 1 minus z, and this 1 upon 1 minus z can be 

expressed in powers of z. And we will have this expansion and accordingly, we will have 

this after simplification. And finally, we will have f z is equal to minus 1 minus 2 z 1 

plus z plus z square and so on which will be convergent for modulus z less than 1. 

Because about z is equal to 0, if we draw circle, then if the radius becomes 1. Then z is 

equal to 1 will be a singularity lying on the circle. And then series will not be 

convergence. So we say this series is convergent for modulus z less than 1. 
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But, power series for modulus z greater than 1 will be obtained as Laurent series. And 

for this, we write down the denominator in the form. As this, I have taken z outside. So, 

it is 1 minus 1 upon z in the denominator. And here, we expand this, this also z can be 

taken out. So, it is 1 plus1 upon z the numerator and in the denominator is expanded as 

this. And what we have f z if you multiply these terms will be simplifying to this series. 

And further simplification will give me, 1 plus 2 upon z, plus 2 upon z square, plus 2 

upon z cube and so on modulus z is greater than 1. And here, you may notice that the 

terms are appearing in the denominator or that we have negative powers of z. So, it is a 

Laurent series, Laurent series expansion of the function. But, it is valid for modulus z 

greater than 1. 
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The power series in if we have to express the same function, but now in powers of z 

minus 2. Then we may notice that, this function is analytic at z is equal to 2. So, Taylor 

series can be used to expand this function. And again, we simplify this term, so that we 

can expand in powers of z minus 2. So, we write down the function in this manner. And 

then expand the denominator in powers of z minus 2 provided z minus 2 is less than 1. 

Otherwise, this will not be convergent. And then at z is equal to 1 function f z is not 

analytic. So, the distance between centre z is equal to 2. And the point, where function is 

not analytic is 1. So that is why we say the radius of convergence for the series is R is 

equal to 1 and we have Taylor series expansion. 
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But, for modulus z minus 2 greater than 1, Laurent series can be obtained. And we have f 

z as z plus 1 divided by z minus 1. We again rewrite it and since our domain is modulus 

z minus 2 is greater than 1. So, we will now take z minus 2. Outside and will have 1 

upon z minus 2 in the denominator. So simplifying this taking q as 1 upon z minus 2 and 

modulus of q is less than 1. 

And, expanding it, it is z plus 1 divided by z minus 2 in powers of 1 upon z minus 2. 

This is the geometric series. And simplifying it, it is z plus 1 multiplied by 1 upon z 

minus 2 minus 1 upon z minus 2 whole square and so on. And the region is z minus 2 is 

greater than 1, because after that there is no point, where function is not analytic. So this 

is the region of, convergence for the Laurent series. 
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Now, this example is slightly different. So far, we have function which we can use. We 

have functions and we are using geometric series expansion for obtaining the Laurent 

series. But in this example, we will be using and the Laurent series expansion. And the 

formulae, which we have derived just now so let us, consider f z as sin z upon z square 

and since f z is not analytic at z is equal to 0. 

So, we consider the circle, c modulus z is less than 1. Then in this circle, we can write 

down f z as b n z minus a raise to the power n, plus summation n is equal to 1 to infinity 

c n z minus a raise to the power of n. So, this is a negative power of n and this series in 

positive powers of z minus a. And here we have to consider that mod z is positive. And 

the formulae for b n and c n, they are obtained as we have already done it. 
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So, let us, use this formulae to obtain, b n and c n. So accordingly, it is 1 upon 2 pi i 

integral sign z divided by z raise to power n plus 3 dz. So, this is the formula for b n and 

for c n the formula is 1 upon 2 pi i z into n z raise to the power n minus 1 multiplied by 

sin z divided by z square. This is by function f z. So this simplifies to integrand, z raise 

to power n minus 3 sin z d z and 1 upon 2 pi i has to be multiplied.  

So this, the formula for b n and c n, since sin z is analytic. So, c n is equal to 0 for n 

greater than equal to 3. So if n is greater than equal to 3. So these terms will not be 

appearing. And all cn’s will be 0 for n greater than equal to 3. So, we need to calculate 

only c 1, c 2, c 3 etcetera. They are going to be 0. So c 1 is given by 1 upon 2 pi i z raise 

to the power minus 2 sin z d z. 

And this is equal to 1 upon 2 pi i into 2 pi i sin z derivative divided by factorial 1. So, 

this is the formula, which I will be making use of. And this derivative is evaluated at z is 

equal to 0. So, if you simplify, this comes out to be 1. This and this will get cancelled 

and derivative of sin z is cos z, which is the evaluated z is equal to 0 gives me 1. So, this 

is c 1. 

Similarly, c 2 will be z raise to minus 1 sin z d z. And according to the formula, we have 

1 upon 2 pi i into 2 is pi i into sin function evaluated at z is equal to 0 divided by 

factorial 0. And this comes sin 0 being 0. This comes out to be 0. 
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So, this is c 1 and c 2 ((Refer Time: 31:58)) is 0, so will have z cube over 120 and so on. 

And it is convergent for modulus z greater than 0. So, this is Laurent series expansion for 

the given function f z. Now, we come to uniform convergence up to this point. We are 

we are using number of results. We are term by term multiplying series. We are 

integrating terms of this series and so on. 

Without bothering, whether this is possible or not. But here, I will discuss uniform 

convergence of the series first. And then we will see that for power series. This term by 

term differentiation and integration is possible. 
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So, to define uniform convergence, consider a series of functions of z. And so, we have 

is equal to 0 to infinity. Summation f and z, which is f 0 z plus f 1 z plus f 2 z plus f n z 

and so on. So this series is considered. Let the some converges for all z in a region G. 

And S z be the sum of this series. And S n z is the nth partial sum of this series.  

Then convergence of series means that we can find N for every given epsilon greater 

than 0 such that S z minus S n z is less than epsilon. For all n greater than N, capital N, 

which will depend upon the epsilon we choose. And the point z at which the 

convergence of the function is convergence of the series is considered. This is the 

meaning of convergence. Note that N depends upon both z as well as epsilon. 
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However, if we can find capital N which is independent of z for every given epsilon 

greater than 0 such that the difference between S z and S n z. It modulus is less than 

epsilon. For all n independent of z, it is a function of epsilon only. Then we say that, the 

series is uniformly convergent. So accordingly, convergence is point wise that means we 

say, the series is convergent at z is equal to a. And uniform convergence, is for a domain. 

So, ((Refer Time: 34:45)) we can find the capital N irrespective of z. In that domain, so 

uniform convergence is for a domain. 
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Now, we establish a theorem, regarding power series. We say that if we have this power 

series a n z minus n, z minus a raise to the power n, n is varying from 0 to infinity. That 

is a power series centre at z is equal to a. Then, it has a radius of convergence R greater 

than 0. So, this power series will have a radius of convergence. R greater than zero, if 

this is true then this is uniformly convergent in the domain z minus a, which is less than 

equal to r. 

For some r, which will be smaller than capital R that is the region of convergence. So, 

the power series a n z minus a raise to the power of n will always be uniformly 

convergent in this domain. Now to prove this, let us consider S n z partial sum as a n z 

minus a raise to the power n. It is a sum of n terms, so it is 0 to N minus 1. So, this is 

partial sum. 

Since each term in the series is continuous in z minus a less than equal to r. Because, 

each term of this series is a power in z. So, each term will be continuous in this region. 

So, we can say that a n plus 1 z minus a raise to the power n plus 1 plus a n plus 2 z 

minus a raise to power n plus 2 and so on. Plus a n plus p multiplied by z minus a raise to 

power n plus.  

So this is sum of p terms after a n this is less than a n plus 1, raise to power r multiplied 

by r raise to the power n plus 1. This being less than r plus an plus 2 modulus. These may 

be these coefficients may be imaginary. So, we have to consider modulus here and r raise 

to the power n plus 2 plus. And the last term is a n plus 2 modulus into r raise to the 

power n plus p. So this sum is less than sum of these terms. so, the triangular inequality 

is applied. 
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So, absolute convergence in z minus a is equal to r, which is less than R. So, we can say 

that, N epsilon can be chosen for given epsilon positive, such that this condition is 

satisfied. For n greater than N epsilon; that means, we can find epsilon such that this 

condition is satisfied. We can find n such that this condition is satisfied. So, this is true. 

For all z in this disk, z minus a modules less than equal to r and for every n greater than 

N epsilon and for p is equal to 1 2 and so on. So, we can say that since N epsilon is 

independent of z. This follows the uniform convergence of power series. So, it does not 

depend upon z and the series is uniformly convergent. So, power series is uniformly 

convergent. 
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Now, we consider this power series 1 plus z Plus z square plus z cube. This is geometric 

series and we know that this f z minus S n z, that is partial sum. The difference between f 

z and partial sum is z raise to the power n plus 1 over 1 minus z, modulus z is less than 1. 

This is the result, which we have already established. And the geometric series is 

convergent at any given z. 

So we can say that, modulus of minus S n z is equal to modulus of z raise to the power n 

plus 1 over 1 minus z less than epsilon. For all n greater than N, so this is for a given z. 

Now we say that, if we consider z naught as slightly different point. N plus epsilon 

divided by N plus epsilon plus 1. So, we can notice that still z nought is less than 1. But 

for this z naught, we can say that z raise to the power n plus 1 over 1 minus z. If you 

simplify this expression this comes out to be this. 
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And further simplification, yields this and from here, we may notice that 1 minus x raise 

to power n is greater than 1 minus n x. When x lies between 0 to 1 and this gives me z 

raise to the power n plus 1 upon 1 minus z is greater than this expression. Or if we 

further simplify, we say z raise to the power n plus 1 over 1 minus z is greater than 

epsilon; that means, the N which we have consider will not work for this specially. When 

we are when z is very close to 1. 

So, f z minus S n z is equal to z raise to the power n plus 1 over 1 minus z greater than 

epsilon. So geometric series is not uniformly convergent. When z is very close to 1, so 

there is a neighbourhood, there is a region very close to z, is equal to 1, where this 

condition is satisfied. And whatever n we have computed. For given x will not work for a 

different z. So this means that it is not uniformly convergent.  

However, if we apply the result of earlier theorem then geometric series is uniformly 

convergent, in z modulus z less than r. So, there exist some r which will be in which the 

geometric series will be uniformly convergent. But, it will not be convergent throughout 

modulus z less than 1. There has to be some r in which this series is uniformly 

convergent. 
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Now, if we consider different series which is x square, plus x square over 1 plus x square 

plus x square over 1 plus x square whole square and so on. Then for this series, S n x 

some partial sum is 1 plus x square minus 1 over 1 plus x square raise to the power n. 

Then we can notice that, S n x tends to, 1 plus x square. If x is not equal to 0 and will 

tend to 0, if x is equal to 0; that means, S x, that is sum of this infinite series minus the 

partial sum is equal to 1 over 1 plus x square raise to power n, for x is not equal to 0. 
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But we know that 1 over 1 plus x square raise to power n modulus is less than epsilon. If 

implies that n must be greater than log 1 over epsilon divided by log 1 plus x square. 

And; that means, this n we can choose for a given epsilon and this depends upon x. And 

therefore, n depends upon x showing that the series is not uniformly convergent, so this 

series which is not a power series. So, this is not uniformly convergent.  

But the earlier series was a power series, it will be uniformly convergent. But, it is not 

uniformly convergent in a small neighbourhood about z about modulus z is equal to 1. 

Now, if the series is uniformly convergent. Then, we try a term by term differentiation of 

Power series. 
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So for this, we have a result, which states that let f z is equal to a power series in powers 

of z minus a, with non zero radius of convergence. Then, f is analytic in a disk which is 

centred at a and of radius R. Then, f dash z is equal to summation n is equal to 0 to 

infinity n times c n into z minus a raise to power n minus 1. So, if we term by term 

differentiate this series. We will get this and this series is converging to the derivative of 

this function f of z. So, term by term differentiate is possible. 
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Similarly, term by term integration of power series is also possible. Let f z is equal to 

summation and n is equal to 0 to infinity, f and z be uniformly convergent power series 

of continuous functions, within a region in G. And, let C is a contour in G. Then, f z d z 

over integral over c is equal to summation, n is equal to 0 to infinity and integral of f n z 

d z. So, this is the meaning of term by term integration. 
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Now, let us prove this. Let the series f z is equal to summation n is equal to 0 to infinity f 

n z be uniformly convergent in a region G. And each term f n z is continuous at point z 



naught in G. Then, the function f z is continuous at z naught. So, we first prove this 

result. And then we will prove the, term by term integrability. So let us consider, S n is 

equal to f nought plus f 1 and so on. That is sum of first n terms and remainder term is f n 

plus 1, plus fn plus 2 and so on. 

Since, the series converges uniformly that is been given to us. We can find n which is a 

function of epsilon. For given epsilon greater than 0 such that R N z modulus of this is 

less than epsilon by 3. For all z in G, so I have taken arbitrary value as epsilon by 3. So 

this is by definition of convergence. 
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And, since S N is sum of finitely many functions which are continuous at z naught, this 

sum is continuous at z naught. Therefore, we can find delta greater than 0 such that S n z 

minus S n z naught. So, this is S N is the valuated at z. And this is at z naught. This can 

be made smaller than epsilon by 3. For all z in G provided we can find delta such that z 

minus z naught is less than delta.  

So, for this, in this, this, this difference will be less than epsilon by 3. This is coming 

from the continuity. And, therefore, we can write down f z minus f z naught as S N z 

plus R N z. This is for f z and for f z not I write S N z nought plus R N z naught. So, this 

will be less than S N z minus S N z naught plus R N z modulus plus R n z naught 

modulus. Now this modulus is taken as less than epsilon by 3. 



And this is uniformly convergent. So, it is again taken epsilon by 3 and for z naught also. 

We have also, we this also is less than epsilon by 3. And that makes f z minus f z not is 

less than epsilon. On this proves that the difference is as f z minus f z naught is less than 

epsilon and this proves that f z is continuous at z naught. 
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Once this is done, we write down integral f z over integral over the curve c is equal to S 

n z d z over c plus R n z d z over c, so integration over c. So this, we can write, let L be 

the length of arc C. Since, the series converges uniformly. We can find N such that for 

given epsilon greater than 0. R n z is less than epsilon by L. For all n greater N and z in 

G. This is due to uniformly convergence which is being given to us. 

So, R n z d z integral and then taken its modulus will be less than epsilon by L. This, we 

have taken and this is length of the curve c is L. So, this is less than epsilon for all n 

greater than N and this implies. That integral f z d z over the curve c minus S n z d z 

integral over c is less than epsilon. This proves our result that term by term integration is 

possible. On similar lines we can prove the result which we have already stated. But have 

not given the proof that is the term by term differentiation of the series. So, we can go 

about this proof and result can be reproduced. Now, we will discuss Weierstrass M-test 

for Uniform convergence. 
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So let us consider, a series of positive terms summation n is equal to 0 to infinity M n. 

So, we have M naught, plus M 1 plus M 2 series. We have convergent series then this 

series, of functions f n z n varies from 0 to infinity. That is f naught z plus f 1 z, plus f 2 

z, and so on. So, this is again, this is another series.  

Now, we say that this series be a series such that for all z in a domain G satisfying this 

condition. That is f n z modulus is less than equal to M ((Refer Time: 49:17)), for all n. 

The idea is term by term. This term is smaller than this, f 1 z is smaller than M 1 and so 

on. So the term by term, if you compare then terms of this series are smaller than terms 

of this series. So if that is the case, then if this series convergent.  

If this series is convergent, then this series will also be convergent. So accordingly, 

summation n is equal to 0 to infinity, f n z is uniformly convergent in G. So, if this is 

possible. Then the series is uniformly convergent in G. So this result can be used to 

establish the uniform convergence of given series. So, what we have to do is, we have to 

find out corresponding M naught, M 1 etcetera, and if the resulting series is convergent, 

then this series is uniformly convergent. Once the series is uniformly convergent then 

term by term differentiation, integration etcetera are possible. 
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So let us, apply this. To this geometric series f z is equal to 1 plus z plus z square and so 

on. And we know that this is 1 minus z, when modulus z is less than 1. So therefore, for 

all z in this interval in this neighbourhood centred at z is equal to 0 and radius 1. We can 

find f z is equal to f dash z is equal to 1 plus 2 z plus 3 z square. And we know that, this 

series is nothing but 1 upon 1 minus z whole square. 

And we know that this is nothing but d by d z of 1 upon 1 minus z. So, the idea is this 

series is being uniformly convergent. And if we term by term differentiate this series, 

and we get this sum of this series is this. We know from we can see that, this is 

converging to this series. And we also know that, this is nothing but derivative of this. So 

this establishes the term by term differentiation of uniformly convergent series.  

Similarly, if we integrate this series term by term then on the right hand side will have 

this series. And we know that, this series is nothing but the series for minus log 1 minus 

z. And if you take it is integral it is nothing but 0 to z 1 upon 1 minus z. So this also 

establishes term by term integration for the given function f of z. 

Viewers, today we have discussed Laurent series representation of a function. If the 

function is analytic in a domain then we can represent this function in power series of z 

by Taylor series. But, if the function is not analytic at certain points in the domain then 

we can always enclose those points by a circle of some suitable radius. Then, in the 

annulus region, if the function remains analytic then we can represent this function by 



Laurent series. So this is what we have done today and apart from this. We have 

discussed uniform convergence and term by term differentiation and integration of the 

series. 

Thank you. 


