
  

Mathematics-II 

Prof. Sunita Gakkhar 

Department of Mathematics 

Indian Institute of Technology, Roorkee 

 

Module - 2 

Lecture - 16 

Diagonalization Parts-1 

 

Welcome viewers. Today’s topic is that Diagonalization of square matrices. To start this 

topic, I will first like to review, what we have done in the Eigen value problem. 
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The Eigen value will be, that for the given linear operator. Find those vectors, which 

transform to their scalar multiples under the transformation, A x is equal to lambda x; 

where A is square matrix associated with the linear operator. X is called an Eigen vector 

and lambda is the associated Eigen value. By this I mean, that if a vector x is given. That 

under this transformation, it will become A x. 

In such a way, that the vector, we transformation vector x is parallel to x. But, it is scale 

has changed. If the scaling factor lambda is bigger than 1, then it is magnified. And if 

scaling factor is lambda is less than 1, then x will be contracted. And then lambda is 

negative the direction will be changed. We have a performed various manipulations on 

Eigen value problem. And we have seen that, the algebra on diagonal matrices is much 



  

simpler. And similar matrices share many properties. This is also been established in one 

of my earlier lectures. 

(Refer Slide Time: 02:01) 

 

Given a square matrix, does there exist a nonsingular matrix P, such that P inverse A P is 

a diagonal matrix. But, this I mean to say, that if I have a square matrix A, can I find a 

matrix P, so that it is similar to of diagonal matrix. And the matrix is obtained as P 

inverse A P. We have seen that P inverse A P is equal to is similar to A. And this will be 

a diagonal matrix. And that we can easily perform variety of algebraic operations on the 

diagonal matrices. 

So, if we can perform operations on the diagonal matrices. We can perform operations 

on the square matrix A. So that is the purpose of diagonalization of a square matrix. So, 

we want to find out, under what conditions the matrix A can be diagonalized. That is 

under, what condition it is possible to find P. And if it is possible to find P, then what is 

P. So, first we have to establish the existence of P. And then we have to find P. So that, 

these are the issues, which are related with diagonalization problem. 



  

(Refer Slide Time: 03:18) 

 

So, I will first give the definition. A matrix A is diagonalizable, if there exists an 

invertible matrix P, such that P inverse A P is a diagonal matrix. And in such a case, we 

say that the matrix P is said to diagonalize A. A matrix A is diagonalizable, if it is similar 

to a diagonal matrix. We have already seen that, if there exists a matrix like P inverse A 

P. Then, A and P inverse A P, they are similar. So, a matrix A is diagonalizable, simply 

means that, it is similar to a diagonal matrix. 
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Now, for this theorem will be helpful. So, let me first state the theorem. For a square 

matrix A, the following are equivalent. That A is diagonalizable and b is that, it has n 

linearly independent Eigen vectors. Now, to prove this theorem, I will first prove that if 

A is diagonalizable. Then, it has n linear independent Eigen vectors. But, since this 

theorem suggests that, these two statements are equivalent. So, I have also to prove that, 

it has n linearly independent Eigen vector means, that A is diagonalizable. 

So, first I will prove the forward part, that is suppose A is diagonalizable. And then there 

exist some non-singular matrix P, such that P inverse A P is equal to D. Now, P has to be 

invertible, because we need P inverse. So, A has to be diagonalizable means, P inverse A 

P is equal to a diagonal matrix D. And, we can write down this equation in an alternative 

form, A P is equal to P D. And this can be obtained by pre-multiplying equation 1 by P. 
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Now, let us calculate A P, so if A is this matrix n by n matrix and P is this square matrix. 

Then, let us try to find out the product matrix. Now, I write down this product matrix as 

this row vector, in which A P 1 is the product of A matrix with the column P 1. So, this I 

call as P 1, so first element in this row is A p 1. This matrix multiplied by this column. 

The second element will be these matrices multiplied by this column. And this is the j th 

entry, in this product and A P n is the last entry. Then, A P j is a j th column of the 

product matrix A P; where A P j this is I have already explained. 
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Now, considering the right hand side P D is equal to the matrix P, multiplied by the 

diagonal matrix. Now, this matrix P is already been explained. And this diagonal matrix 

will have Eigen values in the diagonal. So, in the matrix is diagonalizable means, that we 

have a matrix A is equal to P inverse P D; where D is a diagonal matrix consisting of 

Eigen values. So, if we have Eigen values lambda 1, lambda 2, lambda n for the given 

matrix A. Then, D will be given by this diagonal matrix. 

And then I can perform the multiplication, it is P 11 and lambda 1, first element. Then, 

we will have P 12, lambda 2, this is a second element. And then we will have lambda n P 

1 n, this is will be obtained, when this is multiplied by this column. Similarly, P 21 

multiplied by this is this element and P 2. This row multiplied by the second column, 

will be this element and so on. So, this is the product of these two matrices. 

Then, we can rewrite this matrix as a row matrix, where we will have lambda 1. P 1 is 

the first element, lambda 2, P 2 is a second element and so on. What is P 1, P is actually 

a column vector. This, so P 1 is nothing but first column vector. P 2 nothing but the 

second column vector and P n is the nth column vector of this matrix. So, we have 

simplified P D in this form. 

And now, if we compare, what we had for the earlier expression. Then, we say that A P j, 

which we have compute in the last slide is equal to lambda j P j. So, this is lambda j P j; 

and what we have obtained earlier is A P j. 
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Then, we can say that, P j is the Eigen vector corresponding to Eigen value lambda j of 

the matrix A. And the matrix P consist of column. So, Eigenvector of A, that is what we 

have seen. And since, P is invertible all the Eigen vectors are linearly independent, this 

result which we have established earlier. So, the matrix A has n linearly independent 

Eigen vectors. And if they are linearly independent, then we have proved to the result. 

So, if we have a diagonalizable, if A is diagonalizable. And then it will have n linearly 

independent vectors. Now, if it has the inverse part is that. If it has n linearly independent 

vectors, then it is diagonalizable. So, let us prove the reverse part of the theorem. So, we 

have, let A has n linearly independent Eigen vectors. Then this means, if lambda 1, 

lambda 2, lambda n are n Eigen vectors of Eigen values of A. Then, x 1, x 2, x n are 

linearly independent, that is being given to us. 
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And let P be the matrix, which columns are Eigen vectors of A, so this the matrix. Let us 

form the matrix P with Eigen vectors. And they are linearly independent, so this is the 

first column P 1, then the second column P 2 and so on. Now, A P will be A P 1, A P 2, 

A P j, A P n, this we have already explain. And now A P 1 is equal to lambda 1, P 1, A P 

2 is equal to lambda 2, P 2 and so on. So, we can say that A P j is equal to lambda j P j. 
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And from here, we can say lambda 1, P 1 lambda 2, P 2 lambda j, lambda P j. And 

lambda j P n is equal to this matrix, this we have already seen. So, it is nothing but P 11, 



  

P 21, P n j, the first column P 1to P 2 to P 2. And the second column and this is 

multiplied by this matrix. So, actually we are steps, what we have done in the forward 

part. So, this product is equal to P D. 
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So, we have A P is equal to P D. And from the here, since P is invertible. We can write 

down D is equal to P inverse A P. So, we have started with n independent Eigen vectors. 

And we could prove that the matrix A is similar to D. And that proves that, A is a 

diagonalizable. Now, the diagonal elements of D are the Eigen values of A, this we have 

already observed. And the columns of matrix P are Eigen vectors of A. So, we know to 

how to form the matrix P and this matrix P is invertible, because it forms and columns of 

n independent vectors. 
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So, this forms a basis for finding diagonalizing a given matrix. So, let us discuss the 

procedure for diagonalization. So, the first step is that, you have to find n independent 

Eigen vectors for a given matrix A. And then in the second step, we form the matrix P 

with columns as independent Eigen vectors. Then, third step is calculating P inverse. 

And forth step is form the product P inverse A P. And this will be the diagonal matrix D. 
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So, we apply this procedure to diagonalize, the matrices the square matrices. So, I will 

start with this example, first we consider a 3 by 3 matrix, 4 minus 1, 5, 0, 6, 0, 1 minus 2 



  

and 0. So, let us consider this square matrix. One can find out that, the Eigen values of 

this matrix is minus 1, 5 and 6. And actually, this problem was solved earlier, where we 

have obtained Eigen values of this matrix. And we have obtained the Eigen vectors of 

this matrix. 

Either, you go through the lecture. Or you can take it as an exercise to compute the Eigen 

values and corresponding Eigen vectors. For this example, minus 1, 5 and 6 are the 

Eigen values. And the corresponding Eigen vectors are minus 1, 0 and 1 for lambda is 

equal to minus 1. For lambda is equal to 5 Eigen vectors are computed as 5, 0 and 1. And 

for 6 Eigen vectors are computed as 16 minus 7 and 5. 

(Refer Slide Time: 13:46) 

 

With these Eigen vectors, which are linearly independent. One can form the matrix P. 

So, this is the first Eigen vector, forms a first column. The second Eigenvector form the 

second column. Third Eigen vector forms the third column. So, that is my matrix. Now, 

since this matrix is invertible consisting of independent, linearly independent Eigen 

vectors. So, we have to find out and it is inverse adjoint P divided by determinant P. 

So, let me first calculate determinant P and this comes to be this determinant, which is 

computed as minus 42 and we calculate the adjoint P, and this matrix of sub 

determinants, we take the transpose and this can be easily verified that this is adjoint of P 

and once we get this adjoint. We can write down P inverse as this matrix. 
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So, once we have P inverse, we can calculate P inverse A. So, this is my P inverse and 

this is a given matrix A, perform this multiplication. And this comes out to be this 

matrix, one can check different terms here. 
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After that, given this P inverse A, one can write down P inverse A P. That means, 

multiply this matrix by the matrix. So, this is a matrix P, which I had obtained. So, this 

multiplied by this, when you perform this multiplication. This comes out to be this 



  

matrix and one can notice that, this minus 1, 5 and 6. These are the diagonal elements, 

which are actually the Eigen values of this given matrix A. 

One can check, if you first perform this row multiplied by this. We will get minus 1 and 

when this is multiplied by this. One can check that this comes out to be 0 and so on. So, 

P inverse A P is a diagonal matrix; and we say the matrix is diagonalized, but if you 

consider the second problem, consisting of a 2 by 2 matrix. 

(Refer Slide Time: 16:04) 

 

Then, we had already observed, that lambda is equal to 4 is an Eigen value of 

multiplicity 2. This I have done in one of my earlier lectures. All you can take it again as 

an exercise. And check that lambda is equal to 4 is an Eigen value of multiplicity 2. But, 

we have seen that, it has only one independent Eigenvector. And this means that, it is not 

diagonalizable. We cannot find a matrix P, which is not invertible, so it is not 

diagonalizable. Now, this is another example a 3 by 3 matrix. This matrix is Eigen value 

minus 1, minus 1 and 7, one can take this is an exercise to check. 
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Then, lambda is equal to 7 is the Eigen vector corresponding lambda is equal to 7 is 

minus 1 minus 2, 1. Again this may be an exercise for you. For lambda is equal to minus 

1. We consider system A minus lambda I X is equal to 0. And the system is 1, 2 minus 3, 

2, 4 minus 6, minus 1 minus 2, 3. That is the matrix A minus lambda I, we apply linear 

transformation on these matrix. And, we find that this row and this row. They are 

proportional not only this row and this row they are proportional. 

So, there is only one independent row. And the two rows can be transform to 0 rows by 

using appropriate elementary transformations. And these suggest that this matrix has 

only nullity T and rank 1. That means, we can find two independent Eigen vectors 

corresponding to lambda is equal to minus 1. So, this problem is different and what we 

had in the earlier problem. 

And the earlier problem, we had a root of multiplicity 2. But, we could find only one 

independent Eigenvector, but in this case the multiplicity is 2. And we can find two 

independent Eigen vectors. Now, these two independent Eigen vectors can be obtained 

as 3 k minus 2 r, r and k. How we can assign x by and z arbitrary values of r and k? And 

then if you substitute this as y r, y is equal to r and z is equal to k in this equation. Then, 

3 k minus 2 r comma r comma k, we will satisfy this multiplied by x equal to 0. 

So, the Eigen value corresponding lambda is equal to minus 1, will be given by this. And 

now, we can assign independent values to r and k. So, if I write down r is equal to 0. 



  

Then, Eigen value will be 3, 0, 1 and when I independently assign 0 to the arbitrary 

constant k. Then, minus 2, 1, 0 will be an Eigen vector. And since, I can assign, these 

two values independent of each other. So, we can say that, these two are independent 

Eigen vectors. 

So, corresponding to lambda is equal to minus 1. We could obtain two independent 

Eigen vectors. So, we have three Eigen values lambda is equal to 7, lambda is equal to 

minus 1. And lambda is equal to minus 1. And we could get three independent Eigen 

vectors. So, the matrix P will now be 3, 0, 1 cos. This minus 2, 1, 0 corresponding to 

lambda is equal to minus 1. And the third one is minus 1 minus 2, 1. So, this matrix P is 

invertible. 
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Now, we can obtain is determinant as 8. And this value can be used here, to get the 

adjoint P. And from where can get P inverse. So, adjoint P is calculated as this and P 

inverse comes out to be 1 by 8 of this matrix. We have obtain P, we have obtain P 

inverse, Let us check whether, they give rise to Eigen. They give rise to a diagonal 

matrix. So, for this purpose, we compute P inverse A. So, this is my P inverse, which I 

had computed here and this is given A. So, I compute P inverse A as the product of these 

two matrices, which can be computed here. And the details are given here. 



  

(Refer Slide Time: 21:19) 

 

And finally, P inverse A comes out to be this 3 by 3 matrix. After computing P inverse 

A, we can multiply it, by P to get P inverse A P. And this calculation can be done here. 

And if you multiply this row by this column, we will get minus 8. But, when you 

multiply this row by this, it is 0. This multiplied by this is again 0. So, this way, we can 

perform, you can calculate individual elements of this matrix. And, this comes to be this 

and you can simplify as minus 1 minus 1, 7 in the diagonal. And this is a diagonal 

matrix.  

So, we have started with a matrix A. We have obtained the matrix P. Then, the next step, 

we have obtained P inverse. And when we multiply these two, we find the diagonal 

matrix this and mind here. That minus 1 minus 1 are repeated roots of the given matrix. 

And 7 is the another Eigen value of the matrix. So that this diagonal matrix constitute the 

Eigen values of the given matrix A. 

So, in this example, although we have repeated roots, but still the matrix P can be 

obtained, it is invertible. And the matrix A can be diagonalized. So, we have three 

examples. In the first example, we have all distinct roots. In the second example, we 

have two repeated roots, but the matrix cannot be diagonalized. And in the third 

example, we have repeated roots, but still the matrix can be diagonalized. 
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So, we can say that, the Eigen vectors v 1, v 2, v n corresponding to distinct Eigen 

values. Lambda 1, lambda 2, lambda and lambda n are linearly independent. This is the 

result which we, I have already discussed in my earlier lecture on Eigen values and 

Eigen vectors. So, this we have confirmed here also. And then matrix having n distinct 

Eigen value is diagonalizable. 

So, if a matrix has distinct Eigen values. Then, we can find distinct and independent 

linearly independent Eigen vectors. And the matrix can be diagonalized, but if the roots 

of the characteristic polynomial are real, but not distinct. Then, we may be able to 

diagonalize it or we may not. Like in one example, early in one example, I have shown 

that. It cannot be diagonalized, while in another example, the matrix can be diagonalized. 

Now, we say that n by n matrix is not diagonalizable. If all characteristic roots are not 

real, so if we have complex roots. Then of course, the matrix cannot be diagonalized. 

But, if they are real and distinct, it can be diagonalized. And the second is, if it does not 

have n linearly independent Eigen vectors. Then, again it is not diagonalizable. Now, the 

theorem, which we have discussed that, if useful in diagonalizing the matrix. 



  

 (Refer Slide Time: 24:48) 

 

Now, we talk about diagonalization of symmetric matrices. Now, this is important, 

because we have already seen that all the roots of characteristic equation of symmetric 

matrix are real. So, this is one condition for diagonalization of a matrix. All the roots 

should be real, then they are distinct, then it is diagonalizable. So, if all the roots of the 

characteristic equation of a symmetric matrix are real. 

So, matrix symmetric matrix can be diagonalized. Further a symmetric matrix with 

distinct Eigen value is diagonalizable. So, symmetric matrix is one category of matrices 

which can be diagonalized. Now, we give some definitions. If lambda is equal to lambda 

naught is an Eigen value, then we say it is of algebraic multiplicity r. If lambda minus 

lambda naught raise to power r, is a factor in the characteristic equation. 

So, like in the examples, which we have taken the root is appearing twice, lambda plus 1 

raise to power 2. So, we say multiplicity of the root is 2. Apart from this, we associate 

geometric multiplicity of the root lambda is equal to lambda naught. And we say that, P 

is the geometric multiplicity of the root. If there are at most p independent Eigen vectors, 

corresponding to lambda naught. 

Like in the first example, multiplicity was 2. But, geometric multiplicity comes to be 

one. But, in the second example, algebraic multiplicity is 2, also that geometric 

multiplicity is also 2. And in that case, we have two independent Eigen vectors. And that 

means, the matrix can be diagonalized. Now, this is related with the dimension of Eigen 



  

space. So, we say that the geometric multiplicity is the same as dimension of the Eigen 

space. 
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So, we can easily check, that geometric multiplicity is always less than algebraic 

multiplicity. The number of independent roots will always be less than the multiplicity. It 

can a most be equal to the algebraic multiplicity, but cannot exceed this. And in the case, 

if A is diagonalizable, if and only. For every Eigen value geometric multiplicity is equal 

to algebraic multiplicity. If this is true for each and every Eigen value, only then A is 

diagonalizable. 

So, this is a condition on A, this suggest whether a matrix is diagonalizable or not. 

Because, this condition ensures, that existence of n independent Eigen vectors, even if 

the roots are repeated. So, we do not have to worry about whether we can get in the 

independent vectors or not. We simply check, what a geometric multiplicity is. And if a 

geometric multiplicity is each root is a same as algebraic multiplicity. 

Then, existence of n, independent Eigen vectors are possible. And we can say the matrix 

can be diagonalized, because in that the existence of nonsingular matrix P is possible. 

And that leads to diagonalization of the matrix A. So, if we can find P, if you can find n 

independent vectors, we can find P. And once we can find P, the matrix is 

diagonalizable. But, still there is a difficulty. 



  

Although, theoretically P invertible, so P inverse is possible. And once, we can find P 

inverse. Then, P inverse A P will be diagonalized. But many times, finding P inverse is 

not simple; lot of computation effort is required in finding P inverse. 
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For this purpose, we introduce another concept that is called orthogonally diagonalizable. 

So, we say a matrix is orthogonally diagonalizable, if there exist an orthogonal matrix P. 

Such that, D is equal to P inverse A P. Now, it is first thing is that, the matrix A is 

diagonalizable. So, there has to have to some P and P inverse. So that, D becomes P 

inverse A P, but the matrix is orthogonally diagonalizable. Means there exist an 

orthogonal matrix, which is satisfying this property, that A inverse is A transpose. 

And if A inverse is equal to A transpose. We can straight away write D is equal to P 

transpose A P. So, we do not have to find out P inverse. In that case finding transpose is 

simple as compare to finding inverse. So, this is simpler than what we had earlier. So, 

this is the purpose of defining orthogonally diagonalizable matrices. So, we define a 

matrix is orthogonally diagonalizable. If we can have a matrix P, such that D is equal to 

P transpose A P. 

Now, there are many issues with orthogonally diagonalizable matrices. The issues are, 

what the matrices; which can be orthogonally diagonalizable are. And what are the 

characteristics of such matrices. And if they are orthogonally diagonalizable, then what 



  

is P and once we can find P. Then, of course, P transpose is simple and one can easily 

find out D. 
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So, let us discuss this theorem according to which a square matrix A. For a given square 

matrix A, the following are equivalent. The first is that, A is a orthogonally 

diagonalizable. The second statement is that, A has orthonormal set of n vectors. And the 

third statement is that, A is symmetric. So, these statements are equivalent. By this, I 

mean to say, if A is true. Then, B is also true and if B is true, then A is also true, also B 

implies C and C implies B. 

Not only this A implies C and C implies A; so number of things have to be proved, if this 

theorem is to be proved, we will do 1 by 1. So, first step is that, if A is orthogonally 

diagonalizable, then it will have an orthonormal set of n vectors, so that is a implies b; so 

given that, A is orthogonally diagonalizable. We have to prove that, it has a set of n 

orthonormal vectors. 

So, A has orthonormal set of vectors. So, since A is orthogonally diagonalizable, so there 

exist P. Such that, P inverse is equal to P T, because this matrix P has to be orthogonal. 

So, P inverse is equal to P T and D is equal to P transpose A P, so this product is 

diagonal matrix. And since, P is P T and P inverse has same, so D is equal to P inverse A 

P, so D is similar to P inverse A P as well as it is similar to P transpose A P. So, that is 

which being given to us, from here one can notice that a matrix A is orthogonally 



  

diagonalizable, means that matrix A is diagonalizable, because we can find D, we can 

express P inverse A P as D. 
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And that means, the Eigen values in P are linearly independent because a matrix P, 

matrix A is diagonalizable, so it is Eigen values are linearly independent. And linearly 

independent vectors are orthogonal we know, so this implies this and that means, the 

matrix B, which is set of Eigen vectors P multiplied by P T, P transpose is equal to I 

matrices is orthogonal. 

So, this statement means that b i j is equal to 0, whenever i is not equal to j and it is 1i 

equal to j, this P matrix, you look at this product. Then b i j, the typical element in B is 

obtained as the ith row of A is multiplied by jth column of A transpose, but what is ith 

row of A is the ith row of A multiplied by jth row of A. It is A transpose, so this is 

column is replaced by row. 

So, two rows are two rows A are multiplied and this is equal to 0, when i and j are 

distinct, because they are independent vectors. So, this is going to be 0, when i and j are 

distinct and when i is equal to j, then this ith vector of A is multiplied by ith, jth row of A 

are ith row A; that means, two vectors are multiplied. And this has to be equal to 1, 

according to this, because then our claim is that, B is an orthonormal matrix. 



  

So, for I is equal to j this product is equal to 1 and that means, the column vectors of P 

are orthonormal, because their product is equal to 1, when i is equal to i and when they 

are different, then it is 1. And this means that, column vectors of P are orthonormal, so 

we can say that, A has orthonormal Eigen vector. So, this was to be proved, so we have 

started with orthogonally diagonalization of A. And we have proved that, it is the vector 

the matrix A has orthonormal Eigen vectors, so if the matrix is orthogonally 

diagonalizable. Then, it will have orthonormal Eigen vector, so this is the first part of the 

theorem. 

(Refer Slide Time: 35:53) 

 

The second part is that b implies is a, that is if p 1, p 2, p n are orthonormal Eigen vectors 

of A; that means, the matrix A is orthogonally diagonalizable. So, for this, let us consider 

P as set of column vectors p 1, p 2, p n and these are orthonormal Eigen vectors of the 

matrix A and that means, p i, p j, it is inner product is equal to 0. When i is equal to j and 

it is 1 i equal to j, in fact, when we multiplying ith row with jth that is nothing, but the 

inner product. 

Now, if you consider the product P transpose P, then rows of P transpose of multiplied 

by columns of P, so each term will be of this form and that means, the term will either be 

0 or 1. If it is 0, if i is not equal to j, it is 0 or it will be 1, then i is equal to j, that means P 

transpose P will be a matrix with one in the diagonal. And rest of the elements are 0, that 

matrix is nothing but an identity matrix. 



  

So, P transpose P is equal to identity matrix, similarly one can prove that P transpose is 

also identity matrix and once P satisfy this property, then one can say that, P is a 

orthogonal matrix. And this proves, that A is orthogonally diagonalizable, then the next 

part of the theorem is that a implies c; that means, given D is equal to P transpose A P for 

a given matrix A. 

It is orthogonally diagonalizable means there exist P matrix, such that P transpose A P is 

equal to D and since it is orthogonally diagonalizable, so P transpose is nothing but P 

inverse. So, D is equal to P inverse A P, so we can write down A is equal to P D, P 

inverse, from here and that means, A is equal to P D, P transpose. From here, we can 

calculate the transpose A is equal to P D, P transpose and it is transpose and further 

simplification will give me A transpose is equal to A, that means the matrix A is 

symmetric. 

Now, this completes the proof of this part a implies c, so the matrix a is orthogonally 

diagonalizable, then the matrix is symmetric, but since we have given three statements 

and we have to prove the equivalence of all the three, I have to prove c implies a also. 

But, I leave this is an exercise for this viewer, similarly you have to show that d implies c 

and c implies b, this also I leave as an exercise for the viewer. 
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Now, and we come to this is statement, let us a symmetric matrix has a real Eigen values, 

this we have proved in one of my earlier lectures and Eigen values from different Eigen 



  

spaces are orthogonal. So, this is the statement, which I am going to prove now, so to 

prove this, let us consider that there are two Eigen values of the symmetric matrix A, 

which are lambda 1and lambda 2. They are not equal to that is lambda 1, this is not equal 

to lambda 2. 

And let us assume that, v 1 is an Eigenvector corresponding to lambda 1and v 2 is an 

Eigen vector corresponding to lambda 2, that means A times v 1 is equal to lambda 1, v 

1. From this and from here, we can say A v 2 is equal to lambda 2,v 2, now we recall 

some of the definitions from inner product, that v 1.v 2 is equal to v 1 multiplied by v 2 

transpose. 

And A times v 1.v 2 is equal to v 1 times A T. v 2, so these properties, we use to 

establish result. So we say, we start with A v 1.v 2 and this is equal to v 1, A T, v 2 

which is from this property and since the matrix is given to be symmetric, so A transpose 

equal to A, so we can write down this is equal to v 1.A v 2. Now, I am using this in the 

first expression A v 1.v 2 is lambda 2, v 1, v 2 and from here it is coming to the lambda 

to v 1, v 2. 
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So, from here we can rewrite that equation as lambda 1minus lambda multiplied by v 1 

dot v 2 is equal to 0. Now, this means, that either this is 0 or this product is 0, but since 

lambda 1is not equal to lambda 2, which is being given to us, so v 1.v 2 is equal to 0 and 



  

that means, v 1 and v 2 are orthogonal vectors. That proves the result, that if we have two 

distinct Eigen values of symmetric matrix, then the two vectors are orthogonal. 

Now, independent Eigen vectors of Eigen space can be transformed to orthogonal 

vectors by Gram-Schmidt process of orthogonalization, now this means that we have a 

given matrix A, it will have some distinct Eigen values. And those Eigen value, those 

Eigen vectors will be orthogonal, but there are some vectors, they are some Eigen values, 

which I have repeated. 

And suppose we can find independent Eigen vectors corresponding to those repeated 

Eigen values, the question is can we also orthogonalize them and guess the answer is and 

what we can do is, we can perform Gram-Schmidt process of orthogonalization to 

transform the independent Eigen vectors of the Eigen space. So, if we have repeated 

roots and have independent Eigen vectors, then they can also be transformed to 

orthogonal vectors. 

And that way, the whole a set of Eigen vectors for a given matrix A can be made 

orthogonal and once we can have orthogonal Eigen vectors, we can orthogonal, we can 

make them orthonormalize. We can perform orthonormalization by dividing each vector 

by it is magnitude, so from the given set of independent Eigen vectors of the matrix. We 

can get orthogonal Eigen vectors and then we can make them orthonormal also. 
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And this gives us some method for diagonalization of symmetric matrix, so the step 1is 

find a basis for each Eigen space apply Gram-Schmidt process to obtain orthonormal 

basis for each Eigen space and from that we can form the matrix P. And finally, we form 

the product P transpose A P and this will be nothing but the diagonal matrix D consisting 

of Eigen vectors, Eigen values in the diagonal. So, this procedure can be applied for 

diagonalization of symmetric matrices and you may notice here, that we do not have to 

calculate P inverse, simply P transpose is to be obtained to now make the matrix 

diagonalized. 
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So, we do not have to compute P inverse simply P transposes is required for the process, 

so let us illustrate this with an example; we have a 2 by 2 matrixes for simplicity, so we 

have 2, 1 and 1, 2. We consider, it is characteristic equation lambda I minus A is equal to 

0, it is determinant of lambda I minus A is equal to 0 is to be obtained and for this, if you 

calculate this determinant, then this comes to be lambda minus 3 into lambda minus 1 

equal to 0. 

And that means, lambda is equal to 1 and lambda is equal to 3 or these are two distinct 

Eigen values of this matrix A, so they are distinct Eigen values, so the vectors will be 

orthogonal. So, we start with lambda is equal to 1, so we simplify the matrix, the matrix 

equation A x is equal to lambda x for lambda is equal to 1, this will be the system of 

equation minus 1 minus 1 minus 1 minus 1, x. 



  

And this simply means that, 1 and minus 1 is n Eigen value is an Eigen vector 

corresponding to lambda is equal to 1, because this vector will satisfy this system, so we 

have obtained one Eigen vector corresponding to this value. Similarly, we can obtain 

Eigen vector corresponding to lambda is equal to 3, however, we need not only the 

orthogonal vectors, we need orthonormal vectors. So, we divide this by it is magnitude, 

so lambda is equal to, so for lambda is equal to 1, we have this vector, it is a unit vector. 
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For lambda is equal to 3, this is a system and corresponding to this, we have 1,1 as it is 

Eigen vector, which can be divide by it is magnitude. So, corresponding to lambda is 

equal to one we have this Eigenvector and one can notice that, this vector which we have 

obtained corresponding to lambda is equal to 1 and this for lambda is equal to 3, they are 

orthonormal. 

And once we have P we can obtain P transpose by making its by taking it is transpose, so 

we have this P transpose, now we have to check, whether it is really being diagonalize or 

not. So, we form the product P transpose A P, so this is my matrix P transpose, this is the 

given matrix A multiplied by P. So, first I compute this product and this product comes 

out to be this multiplied by P.  

If this is matrix P, which is given to me and if we perform this computation, we perform 

this product and you will have D is equal to 1, 3, 0, 0, so this matrix is diagonalized. So, 



  

I have been given a symmetric matrix, which is diagonalized with the help of P and P 

transpose, in fact what we have done is, we have done orthogonal diagonalization. 
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Now, in this example, the question is does there exist a symmetric matrix with Eigen 

values, minus 1, 3 and 7 with Eigen vectors this and this and if, then obtain the matrix A; 

that means, if we have Eigen values given. If, we have corresponding Eigen vectors can 

we find the matrix A, so this is, what we are going to do in this example, so we have 

been given three distinct Eigen values and see the Eigen values are distinct. 

One can say, then Eigen vector should be orthogonal and by this, I mean to say, these are 

the three Eigen vectors given to me, if, whether they are orthogonal or not. So, let us 

check with this is perpendicular to this or not, so I perform this product comes out to be 

0. I take the second product, this and this, this is also 0 and this and this, this is also 0, so 

these three vectors, these are Eigen vectors and there are orthogonal. 

So; that means, there exist a matrix A, which is having these three Eigen values and 

corresponding Eigen vectors and this orthonormal Eigen vectors corresponding to these 

given set of Eigen vectors. They are 0, 1 by root 2 minus 1 by root 2, corresponding to 

first, corresponding to second one, it is 1, 0, 0 itself and for the third, we will have 0, 1 

by root 2 and 1 by root 2, so this is a set of orthonormal Eigen vectors. 
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And then I can form matrix P for some matrix A, so this is first Eigen vector, second 

Eigen vector third Eigen vector and P transpose is this. So, the matrix A will be equal to 

this P transpose D and P, so A is equal to P transpose D and P, so this is being given to 

me. This I have computed, so from here, I can compute A, this is possible, because I 

could get this matrix P. 

So, if you perform this product, first this product, which is coming out to be this, one can 

verify that, this product is actually this, then once we get this product multiplied by this; 

that means, this and computing this product, one can get this matrix. So, this is the 

matrix A, which is symmetric and we can obtain the symmetric matrix, which is having 

Eigen values, which are specified and Eigen vectors which are given and from there, we 

can find the matrix P and P transpose. So, this is the reverse problem, I have been Eigen 

values, I have been given Eigen vectors and I have to find the matrix, so this is possible 

in this manner. 
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In the next example, if I have the matrix A and I have to find to A cube, see in the 

beginning I said that with the diagonalization, a computational effort will be less, while 

performing algebra on matrices. So, let us see how the effort will be simplified for this 

matrix A, I have to compute A cube, if I have to computer A cube without doing 

normalize without doing diagonalization etcetera. 

So, what I have to do is, I have to first perform A, I have first to multiply A into A 

getting A square, then A square and A will be multiplying to get A cube, but it is not 

only the letter of A cube. It may be A raise to the power 10, A raise to the power 30, so I 

have to do this way for each and every product, things will really be complex, so let me 

illustrate the procedure in which you can easily perform, such type of computations by 

using diagonalization. 

So illustrating this concept with the help of A cube, I start with a symmetric matrix A, 

which is this is matrix, which side given to this is applicable early for symmetric 

matrices, so this is a symmetric matrix. So, if I have been given symmetric matrix, then I 

can write down this symmetric matrix as D is equal to P transpose A P, that is D is 

similar to this matrix D is diagonal matrix. So, what is D cube, D cube is this multiplied 

3 times and since matrix multiplication is associative. 

So, one can rearrange these terms to have P, P transpose at one place, this P, P transpose 

at again, they can be combined and we know that P, P transpose is identity. This P, P 



  

transpose is also identity. So, what we have is P transpose A into A into A and that gives 

me P transpose A cube P, so for this given matrix A, I know its Eigen values. 

So, I know, what is D, so diagonal matrix consisting of Eigen values and D is a diagonal 

matrix, computing D cube is very simple, because what we have to do is, we have to 

simplify cube the diagonal elements rest of the elements are 0. So, D cube is known, so 

from this expression, I can write down A cube as P times D cube P T, that means, if I 

multiply here P and post by P T, then P into P T is identity and this P into P T is also 

identity. 

So, what remains on this side is simply A cube, so A cube is PD cube P T, so calculating 

A cube simply means calculate the diagonal and then make this product and you can. In 

fact, generalize this result and you can say D raise to the power n is P transpose A rise to 

the power n P. That means, you can get any power of A and this can be given as A rise to 

the power n is equal to P D rise to the power n P T. So, you have simply multiplied by P 

and P transposes, this is post multiplication, this is pre multiplication and you can get the 

product, so I apply this to calculate A cube. 
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So, A cube is P D cube P T and this D cube is this P, it is I have already computed like 

this and my earlier example and the Eigen values are minus 1, 3 and 7. So, one can very 

easily compute 3, it is minus 1 raise to the power 3, 3 raise to the power 3 and 7 rise to 



  

the power 3 and this is the post multiplication and these 3 matrices are to be multiplied to 

get A cube. 

So, whatever be the value of n here, n may be 3, 10, 20, whatever it may be, I have to get 

only this product and that is how we get A cube. So, in this example, I have illustrated 

how we can make use of diagonalization process to get your algebra simplified. 

So, today in my lecture, I have given you method of diagonalization and we have 

discussed orthogonal diagonalization also and with the help of orthogonal 

diagonalization, I have simplified the process of diagonalization in the sense, that I have 

do not have to now compute a inverses, I simply work with transposes and that is only 

for matrices, which are symmetric. So, first diagonalization of symmetric matrices is 

simple and then once we can get the diagonalization, things the algebra will be simpler, 

so this is all for today’s lecture. 

Thank you. 


