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Welcome viewers, today we will be discussing Quadratic Forms. This lecture includes 

quadratic forms and positive definite quadratic forms. The pre-requisite to this lecture is 

eigenvalues and eigenvectors, together with diagonalization. I suggest that before going 

through this lecture, the user must go through the eigenvalues and eigenvectors together 

with diagonalization. We start with quadratic forms. 
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We all are familiar with this quadratic form a x square plus 2 b x y plus c y square is 

equal to d. We call it a quadratic form, because this has x square term, x y term and y 

square terms in this expression. And all these terms are quadratic. So, we say this form is 

a quadratic form; provided a, b, c and d are real numbers. And for these real numbers this 

expression represents a conic section, in two dimensional plane. 

We call it a conic section, because it is obtained by cutting cones by planes. These forms 

are used in many applications. And that is why, we are discussing them in this lecture. 

This is a particular form, the more general form maybe a x square plus 2 b x y plus c y 

square plus linear terms d x plus e y plus f equal to 0. This more general form than this. 

It has all the terms, which are quadratic. But, this may have linear terms also. 



(Refer Slide Time: 02:17) 

 

Now, general form is very difficult to recognize. So, we consider forms as a standard 

form, in which we do not have any cross product terms and linear terms. Like x y, x 

square or y square and terms like d x plus e y, etcetera. So, the term an expression, which 

is free of these linear terms. As well as product terms is called a standard form. It is 

centre is origin of rectangular coordinate system, that is why this is preferred. 

Like we have x square plus y square is equal to 1, we know it is a circle. It does not have 

any cross terms, does not have any linear terms. So, it is a standard form of a circle, 

having centre at origin and radius 1. Similarly, we have x square by a square plus y 

square by b square is equal to 1 represents an ellipse. Again this is free of cross terms 

and linear terms. Another form maybe x square over a square minus y square over b 

square is equal to 1, it represents hyperbola. And we may have a form y square is equal 

to 4 a x. So, x square is equal to 4 a y, it represents parabola. 
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This is the circle we all are aware of this. Now, this represents and ellipse. Here these are 

equal, but in case of ellipse the major axis and minor axis, these components are 

different. Now, this represents a hyperbola, the yellow lines, the yellow curves. These 

are the axis and in fact, these are the asymptotes of the hyperbola. In case of parabola, 

this is a parabola or parabola maybe like this. 
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Now, if cross product terms are present. Then, we can bring again into standard form by 

suitably rotating the axis. So, if cross terms are present. Then, rotation of axis is required 

and we may get an expression which is in standard form. For example, x y is equal to 1 is 



this curve. So, we have rectangular axis and these are the curves representing x y is equal 

to 1. But, if you rotate this axis, then the curve will look like as this. 

And this x y is equal to 1 will transform to y square minus x square is equal to 1, by 

suitable transformation. And here, we do not have any cross term present over here. But, 

this curve is the same as this, only thing is we have to rotate this axis. So, after rotation, 

this was the previous axis before rotation. And when you rotate it, it will be the new axis. 

So, this curve and this curve they are same the only difference is that this curve is 

rotated. So, after rotation cross terms can be eliminated. And one can very easily 

recognize this to be hyperbola. 
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Similarly, this represents an ellipse, a x square plus b x y plus c y square is equal to 1, for 

suitable values of a, b and c, and then after rotation of axis this axis. Then, will have this 

ellipse. And the equation will be transformed to 2 x square plus y square is equal to 1. 

Now, this is the original axis and after rotation, this is the new axis. So, on the new axis 

it is 2 x square plus y square is equal to 1, which is standard form. And no cross terms 

are present over here. 

Now, what will be the effect of translation. Translation is required, when linear terms are 

present to bring the system; to bring the given quadratic form into standard form. For 

example, if we have been given this ellipse. And the expression for this will require 

linear terms also. But, if you translate this axis. That means, to shift this origin to this 



place, then it will be a normal form. So, you are shifting this origin to the centre of the 

ellipse. And this will now be in a standard form. So, whenever linear terms are present 

one has to shift, one has to perform translation to get the standard form of the quadratic. 
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Now, the identification of conic section, requires rotation and translation of coordinate 

axis. So that, we can easily recognize by it is standard form. So, this rotation and 

translation are required, to bring the given quadratic into the standard form. And from 

there, one can easily recognize the quadratic. Now, these method can be better 

appreciated with matrices; and there eigenvalues and eigenvectors. 

See what I have tried to explain here is, the case of two dimensions. But, if we are having 

three or more dimensions quadratic forms. Then, things will be difficult to visualize. But, 

with the help of matrices and eigenvalues and eigenvectors; one can very easily identify 

the quadratic forms. So, in general let us say we have three dimension surface. Or we call 

it a quadratic surface, which is a x square plus 2 b x y plus 2 c x z plus c y square plus 2 f 

y z plus c z square is equal to g. 

So, this is a quadratic form in three dimensions, for a, b, c, d, e, f all the coefficients 

being real. Now, if not centered at origin the form of equation will be more complex. 

Now, there are no linear terms present in this. So, it is centered at the origin. But, if these 

terms are also there, then the surface will not be centered at the origin and form will be 

more difficult. In general form the quadratic is written as x transpose A x plus B x is 



equal to k. This is the matrix equation, where A is the square matrix and x is a column 

vector. 
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Now, we come to the quadratic forms, some examples. If we consider this quadratic form 

2 x square plus 3 x y plus y square in two variables. Then, we can write this quadratic 

form in the matrix form as X transpose A X, where X is a column vector x and y. How 

we get the matrix A. A is a square matrix of order 2 by 2. So, we write this 2 and this one 

in the diagonals. And this quadratic cross term is written as 3 here and 0 here. And that 

makes the matrix A as 2 3 0 1. And let us see that this actually represents this quadratic. 

So, let us multiply this, so we have 2 x. And this multiplied by this gives me 3 x plus y. 

When multiplied by x y, this gives me 2 x square plus 3 x y plus y square. So, this given 

quadratic is equivalent to this matrix representation, where A is this 2 by 2 matrix. But, 

this representation is not unique, you can check that. 
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We can write down the same quadratic in this form. Like we have A as 2 2 1 and 1. What 

we have done is that, we have broken down that 3, the cross term in two parts. So, 2 is 

here and 1 is here. And accordingly, when we multiply, it is 2 x plus y. And this 

multiplied by this is 2 x plus y. Multiplied by this column vector, will give the same 

expression 2 x square plus y x plus 2 x y plus y square equal to 2 x square plus 3 y x plus 

y square. 

So, if we breakdown this term as 2 and 1 will be getting this. You can break it as 1 and 2, 

again one can check that we will be getting the same expression for the quadratic. And 

this is not unique, you can breakdown in any number of ways. And you can have 

corresponding matrix A. 
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So, this q x y can be written in many different ways, as x transpose A x and A may have 

different values. However, there is only one way in which the matrix A is symmetric 

matrix. So, if we want to write down a matrix, which is symmetric. Then, we can have 

only one possible way to represent this quadratic as this matrix. So, let us see how we do 

this. For symmetric matrix, we divide the product term into two equal parts. That is if we 

have this quadratic. Then, 3 x y is divided into two parts, 3 x y by 2 here and 3 x y by 2 

here. 

And that makes the matrix A as 2 and 1, 2 is this square term. This one is this square 

term, and 3 by 2 corresponding to this and 3 by 2 corresponding to this. So, this matrix is 

the associated matrix A, with this given quadratic. And one may notice that, this is a 

symmetric matrix. 
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In the next example, I am considering a three dimensional surface. 2 x square plus 3 x y 

plus y square plus 2 x z plus y z plus z square. So, I need q x, y, z is equal to x, y, z. And 

a three dimensional 3 by 3 square matrix A, multiplied by the column matrix x, y, z. So, 

this 3 by 3 matrix is obtained as first term 2, corresponding to this term. Then, 

corresponding to this I have 1 here. From here, I will be having 1 here. 

This 3 x y is divided into two equal parts. So, 3 by 2 here and 3 by 2 here, only x and y 

part. But, 2 x z will contribute, here and here, since it is 2. So, half of half it 1 is here and 

half of this is appearing here. And y z will appear in this part, this y z. So, half of y z is 

coming here and another half is here. So, that is how I obtain this matrix A. In general, if 

I have quadratic expression in n variables. Then, this can be written in this form, 

summation b i j x i x j i and j varies from 1 to n. 

So, how to get b i j’s, so I write b i j as b i j plus b j i by 2 multiplied by x i x j. So, I am 

writing this expression in this form. And from here, I can get the matrix a i j. So, a i j is a 

typical element of the matrix A; and this is equal to b i i, when i is equal to j. And when i 

is not equal to j, that means corresponding to the cross terms, I will write down this as b i 

j plus b j i by 2. And if this is what I am doing here, this is b i j and b j i is 3 here. So, 

divided by 2, that is a i j. 

And if I define my matrix a i j in this manner. Then, one can easily observe, that a i j is 

equal to a j I, because if i is equal to j they are equal. And when i and j are not equal, 



then a i j is equal to a j i. So, for the matrix a i I have a i j is equal to a j i. And that 

simply means, that the matrix is symmetric. So, with this definition I can always 

represent a given quadratic in the matrix form, where the matrix is a symmetric matrix. 
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Now, I formally define quadratic form. We say that if A is symmetric matrix. Then, the 

real valued function g from R n to R 1 defined as g x is equal to x transpose A x, where x 

is a column vector; x 1, x 2, x n transpose. It is called a real quadratic form in the 

variables x 1, x 2, x n. So, if we can define such a function g x, represented as x 

transpose A x. Then, this g x is a quadratic form in variables x 1, x 2, x n. The matrix A 

is a matrix of quadratic form. For example, if I have a two dimensional vector x. So, we 

have x y is a column vector A is a symmetric matrix, a b in the diagonals and c c in the 

non-diagonal terms. Then, x transpose A x defines a quadratic form, one can check it 

easily. 
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In the second example I have a three dimensional column vector x. And A is this 

symmetric form, d and d here c and c here f and f here. So, it is a quadratic form. By 

suitably changing the variable x is equal to P y; where P is a non-singular matrix. We can 

write down the quadratic expression P x. X is a column vector is equal to P y transpose. 

That what I am writing for x transpose A multiplied by P y, one can simplify it. 

It is y transpose P transpose. So, P transpose into A and P multiplied by y, Because, 

multiplication is associative. So, you can regroup the terms and what we have is y 

transpose B y. Now, we can say this q x is not transform to another quadratic in y, we 

call it q 1 y, it is y transpose B y. So, quadratic can be transformed to another system. 

And this transformation will be x is equal to P y. So, we have given initially q x and then 

we have transform it into q 1 y. 
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Now, we define that, if A and B are square matrices of order n. Then, B is congruent to 

A provided B is equal to P transpose A P, for a given nonsingular matrix P. So, the two 

matrices A and B are congruent, if they are related by this expression. So, B is equal to P 

transpose A P, for some non-singular matrix P. Then, B and A are congruent; and we can 

also say that A is congruent to B. If this condition is satisfied and maybe, we can in shot 

say that A and B are congruent. 

In fact, congruence is more general concept, then similarity of symmetric matrixes by an 

orthogonal matrix P. Since, we have already gone through this lecture, on similar 

matrices. We say that, B is equal to P inverse A P. Then, B is similar to A, and when P 

happens to be an orthogonal matrix. Then, P inverse and P transpose, they are same. And 

in that case, we can say that this is nothing but B is similar to A; where P happens to be 

an orthogonal matrix. But, congruence is a more generalized concept. Then, simply 

symmetric matrix, or it is more general concept, then similarity of symmetric matrices by 

an orthogonal matrix P. Hence, here for this concept, we require P has to be a 

nonsingular, which is not the case in this relationship. 
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We further prove that, congruence is an equivalence relation. By equivalence relation, I 

mean to say that, A is congruent to A. And if A is congruent to B, then B is also 

congruent to A, that is symmetric relation. And finally, transitive, that is if A is 

congruent B and B is congruent to C. Then, A is congruent to C. So, these things can be 

very easily proved. And we conclude that, congruence is a equivalence relation. The 

quadratic forms q x and q 1 y are equivalent. If the matrices A and B are congruent, so 

this is what we derive. 
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Let us check in the example, if q x is 2 x square plus 2 x y plus 2 y square. Then, q x can 

be written as x transpose A x, where A is the corresponding matrix. It is 2 2 and this term 

is 1 and 1. So, this is the representation for q x. Let us write down changed system u v is 

equal to P times the original system x y, where the matrix P is. Let us take this matrix P 

is 1 by root 2 1 1 minus 1 1. 

How we arrive at this matrix, that I am not discussing at the movement. But, if we use 

this transformation, then q 1 comes out to be u v P transpose A P multiplied by u v. And 

that means, if you perform this multiplication, then q 1 comes out to be. We are 

substitute these values here, q 1 comes out to be u square plus 3 v square. The idea is I 

have started with this quadratic, in which some cross terms are present, but after this 

transformation, which I have applied here. 

The congruent form is free of cross product term. So, it is now written as u square plus 3 

v square. That means, given a quadratic, we can transform into a form, where cross term 

will not be present. And we know that handling, such things are simpler as compared to 

this. 
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So, q x can be transformed to a more suitable equivalent form, as u square plus 3 v 

square, it is free of product term. And this can be done for this is an example only. This 

can be done in general and for that, we will have principal axes theorem. According to 

this, the quadratic form q x is equal to x transpose A x is equivalent to this form. Q 1 y is 



equal to y transpose B y, which is lambda 1 by 1 square plus lambda 2 y 2 square plus 

lambda n y n square, where lambda 1 happens to be the eigenvalues of the matrix 

associated with this quadratic A. So, B is a diagonal matrix. And these terms are the 

eigenvalues of the matrix A. So, this is called principal axes theorem. So, for symmetric 

matrix, this is possible. So, let us try to prove this, here is the proof. 
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We consider q x is a quadratic represented, as x transpose A x, A is the associated 

matrix. And it is a real symmetric matrix. Now, A can be diagonalized by an orthogonal 

matrix P. Such that, D is equal to P inverse A P, this is the result, which we have already 

discussed in my earlier lectures. So, if A is the real symmetric matrix. Then, it can 

always be diagonalized by an orthogonal matrix P, which is the matrix of eigenvectors of 

this matrix A. 

So, if P is the matrix of eigenvectors, then P is invertible. So, P inverse exist, in that case 

D is equal to P inverse A P will be a diagonal matrix. And since, it is this P inverse I can 

write it as P transpose. Because, it is a orthogonal matrix. So, P inverse is equal to P 

transpose. So, D will be P transpose A P or we can say, if we can write down D in this 

form, then by the definition of congruent. We can say that, A and D matrices are 

congruent. 

Now, this is possible, because P is orthogonal. That is I have already explained and the 

diagonals of D are eigenvalues of A. So, all this requires the earlier lectures, where on 



diagonalization. And with this q x is represented as x transpose A x equal to x transpose 

P transpose A P x. 
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And then we can use this substitution y is equal to P x. And then we can easily check 

that, q x will transform to q 1 y. So, q x is written as P y transpose A P y, this simplifies 

to y transpose P transpose A P y. We can regroup the terms. And it is y transpose 

multiplied P transpose A P multiplied by y. And I write down P transpose A P as B. So, 

this expression becomes y transpose B y. So, this q x is now transformed to q 1 y, where 

this is a again a quadratic form. But, the associated matrix is B, so A and B are congruent 

matrices. So, the forms q x and q n x are equivalent. 
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And application of orthogonal diagonalization, does not require the matrix P. Or 

eigenvectors need not be computed only eigenvalues of A are required. That is the 

advantage of this form. We do not have to require the matrix P,, only the eigenvalues are 

required. This is illustrated in the example. So, let us consider the quadratic form 4 

multiplied by x 1 x 2 plus x 2 x 3 plus x 1 x 3, are quadratic in three dimensions. 

So, determinate it is equivalent quadratic form q 1 (x, y, z), in which the associated 

matrix is a diagonal matrix. Or this form is free of cross terms. So, let us consider the 

matrix corresponding to this. Since, all the diagonal term, all the square terms are absent, 

so diagonal will be 0. And it is 4 times, so it is 2 here and 2 here corresponding to x 1 x 

2. And this 2 and 2 corresponding to x 1 x 3, and this 2 and this 2 corresponding to 4 

times x 2 x 3. So, this is the associative matrix with this quadratic form. 
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Now, to find eigenvalues consider this characteristic equation. It is determinant of 

lambda i minus a. So, this is lambdas, minus lambda will appear in the diagonal. And 

this is rest of it is a, so it is a minus lambda i equal to 0. And you simplify it, the 

characteristic equation will come out to be, this is the simplification. And this gives me, 

this expression, which will be further simplified to give lambda is equal to minus 2. And 

minus 2 and one eigenvalue is 4. So, two roots are repeated and one is 4. We have three 

eigenvalues for this given matrix A. 
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So, the equivalent quadratic form is simply minus 2 y 1 square minus 2 y 2 square plus 4 

y 3 square. And we do not have to compute P and P transpose. And perform the 

multiplication to arrive at this quadratic form, only eigenvalues are needed. So, there are 

two eigenvalues minus 2 minus 2. So, we have two terms, minus 2 y 1 square minus 2 y 

2 square corresponding to them. And third term is 4, because the eigenvalue is 4. 

So, we have here 4 by 3 square, the another equivalent form maybe this. Here, again I am 

having two eigenvalues minus 2 minus 2 and one value 4. But, what I am doing here is, I 

am associating these two negative values with y 2 and y 3 and y 4, is associated with y 1. 

In this case 4 was associated with y 3. So, these are alternative forms and they are 

equivalent. Now, we say of this theorem as a principal axes theorem. Because, y 1, y 2, y 

3 are actually the principal axes of the quadratic surface. 

And these axis lie along y 1, y 2, y 3 axis, in the new system, and that is the reason, we 

say this, that this form is a standard form. And the theorem changes our coordinate axis 

to corresponding principal axis. And that is why, we say the theorem as principal axis 

theorem. Now, these are some of the results, which we have obtained earlier. And the 

actually, these forms the basis for finding out q 1 y. 

We know that eigenvalues of symmetric matrices are real. So, these values are real, so 

we always have. We can always transform our given quadratic in this form, where all 

these coefficients are real. Because, eigenvalues are real, so this is always possible. If 

Eigen values of a matrix are complex. Then, this would not have been possible, but since 

the matrix is a symmetric matrix. So, the eigenvalues are always real, and we can always 

find out this form. And existence of q 1 y is guaranteed, due to the real eigenvalues. So, 

if lambda 1, lambda 2, lambda n are the eigenvalues of A. 
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Then the q x, which is given as x transpose A x can be transformed to the real 

eigenvalues. Lambda 1, lambda 2, lambda n are arranged in a manner. So, that all 

positive eigenvalues appear first. And then all negative values and finally, the zeros 

eigenvalues. So, if lambda 1, lambda 2, lambda p are real positive values. And lambda 1, 

lambda 2, lambda r are real values. Then, lambda p plus 1, lambda p plus 2, lambda n are 

0 values. 

So, r happens to be the rank of the matrix p and out of these r, p are positive and 

remaining will be negative, while lambda p plus 1 to lambda n or eigenvalues are 0. 

Now, we consider an another diagonal matrix, H with diagonal elements, as 1 over 

lambda 1, 1 over lambda p, 1 over under root lambda p plus 1. And then the negative 

terms are written with minus sing under root. So, lambda r is negative, so we write it as 

minus lambda r it is under root. And then we write down 1, 1, 1 corresponding to these 

zero value. So, I form a matrix H with these eigenvalues. 
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Now, let us consider this matrix D 1 as H transpose D H. Now, H, D and H are all 

diagonal matrices. And H is having term, positive terms as 1 over under root lambda. 

And H transpose is also having 1 over under root lambda, while, D is having under root 

lambda. So, when you multiply this every term in the diagonal of D 1, will be either 

having 1 or will be having minus 1; depending whether the corresponding eigenvalue is 

positive or negative. 

And then the values corresponding to 0, will be having 0 over here. So, D 1 will either be 

having 1 or minus 1 or 0. So, this way we can write down the diagonal matrix D 1. And 

once we can express D 1 as this matrix, we can say that D and D 1 are congruent. And 

that means, a given quadratic q x is equivalent to a quadratic form q 2 y, which is equal 

to y 1 square plus y 2 square plus y p square positive terms minus y p plus 1 square 

minus y p plus 2 square up to y r square with negative terms. 

The rank of this associated matrix was r. So, we will have at the most r terms some of 

them will be positive, some of them will be negative. The difference between q 1 y and q 

2 y is in the coefficients. In q 1 y the coefficients are eigenvalues. But, in q 2 y the 

coefficients are plus 1, or minus 1 depending upon the sign of corresponding eigenvalue. 

So, for a given matrix q x, we can always transform it into a form; where q 2 y is y 1 

square plus y 2 square plus y p square minus y p plus 1 square up to minus y r square. 



So, this particular form is called canonical form. So, when p is fixed, q 2 is unique. So, 

this is the result, which we are having. And given polynomial can always be transformed 

to the corresponding canonical form; and it is a unique form. 
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Now, I will introduce a term inertia, which is a trial consisting of three values. This first 

value represents, how many eigenvalues are positive. The second term represents the 

number of negative eigenvalues. And zero is the number of 0 eigenvalues. So, inertia of 

associated with the given quadratic is trial, indicating the number of positive 

eigenvalues. Negative eigenvalues and zero eigenvalues and from there, one can find out 

the canonical form. 

Now, the difference between the number of positive eigenvalues, and negative 

eigenvalues is called the signature of quadratic form. So, if I am having p number of 

eigenvalues, which are positive and r being the rank. Then, r minus p will be the negative 

eigenvalues remaining will be 0. So, p minus r minus p is equal to 2 p minus r. So, we 

say that 2 p minus r is the signature of the quadratic form. We say, if q 1 and q 2 are 

equivalent quadratic forms. Then, they have same rank and same signature, this result is 

easy to prove. Then the next result is that q 1 and q 2 have same rank and signature. Then 

they are equivalent, it is just converse of this. 
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Let us illustrate this with an example, I have been given a quadratic 4 y 1 square minus 2 

y 2 square minus 2 y 3 square. It is eigenvalues are 4 minus 2 minus 2 and D is 4 minus 2 

minus 2. Actually this quadratic is been taken from earlier example. And we have 

already computed the eigenvalues of that matrix, as minus 2 and minus 2. So, for this 

quadratic eigenvalues are 4 minus 2 minus 2. And correspondingly, we have the diagonal 

matrix as 4 minus 2 minus 2 and of diagonal terms are all zeros. 

Then, the eigenvalues of H will be 1 by 2 it is under root of 1 by lambda. So, it is 1 by 2 

and then the next eigenvalue will be 1 by minus of the eigenvalue. So, that is why, it is 

coming out to be 1 by root 2. And another eigenvalue of H will be 1 by root 2. Now, let 

us now compute D 1 as a H transpose D H. So, I am writing H transpose, now H is a 

diagonal matrix. So, it is transpose will be the same as H. 

And the values in the diagonal will be 1 by 2, which is under root of 1 by 4. Then, 1 over 

under root 2, it is under root of minus of minus 2. So, it is 1 by root 2 and we have 1 by 

root 2. Then, this is the matrix D diagonal elements, I have not shown here. But, they are 

zero elements and will have this diagonal matrix H. And you multiply it ((Refer Time: 

39:54)), this multiplied by this and this multiplied by this is 1, this, this. And this 

multiplication gives me minus 1, this, this and this is minus 1. 
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And correspondingly, we have D 1 is equal to a diagonal matrix with 1 minus 1 and 

minus 1. Accordingly q 2 y, comes out to be y 1 square minus y 2 square minus y 3 

square. So, these are two negative eigenvalues. So, it is minus y 2 square minus y 3 

square. And since, it has one positive eigenvalue and two negative eigenvalues. So, we 

can say p is equal to 1 rank of this matrix is 3. So, number of negative values will be r 

minus p that is 2. 

And from here, inertia is positive value is 1, negative value is 2, 0 value is 0. So, number 

of 0 values is 0 here, so inertia is destroyed. And signature of this quadratic form is s is 

equal to minus 1. Because we are having more negative eigenvalues compared to 

positive eigenvalue; so signature come out to be negative. 
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Now, we start with the general form of the quadratic equation, x transpose A x plus B x 

plus d equal to 0. Of course, we have till now concentrated on this part x transpose A x. 

So, let us consider, we have a general form x transpose A x plus B x plus D is equal to 0. 

Then, if A is not diagonal matrix. Then, we rotate it by this transformation, x is equal to 

P y. And it will become diagonal matrix and if B is not 0. Then, we translate the axis, so 

that we can get rid of this. 

And we finally, have x transpose B x, or we can say y transpose B y plus D equal to 0. 

So, this can be easily converted into a standard form. And the classification of this 

standard form, actually depends upon this eigenvalue problem A x is equal to lambda x. 

And that is how, we identify or classify 2 D surfaces. See this eigenvalue problem, if it 

has 2 eigenvalues which are positive. Then, the corresponding standard form will be an 

ellipse, it is inertia will be 2. Because, number of eigenvalues are 2, it is two dimensions. 

So, negative values will be 0 and no eigenvalue is 0 in this case, it is hyperbola when 

both the eigenvalues are negative, when the product lambda 1 and lambda 2 is negative. 

So, one eigenvalue is positive and one eigenvalue is negative in this case. So, one for 

number of positive values, one negative eigenvalues no value which is 0, and it is 

parabola, when one eigenvalue is 0. 

So, either lambda 1 is equal to 0 or lambda 2 is equal to 0. Then, it will represent a 

parabola, it has one positive value, it has no negative value and 1, 0 value. So, depending 



upon the inertia corresponding to given matrix in the given representation. We can 

classify the quadratic as ellipse hyperbola or parabola; and corresponding inertia is given 

as this. 
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Now, for 3 D surfaces we can similarly classify a quadratic surfaces. We say if inertia is 

3, 0, 0, then it is ellipsoid. That means, all the 3 eigenvalues are positive. No eigenvalue 

is 0 and nothing is 0, no eigenvalue is 0 in this case. Then, we have ellipsoid. And when 

inertia is 2, 0, 1. Then, we call it elliptic parabolic. So, 2 eigenvalues are positive, one 

value is 0, no eigenvalue is negative, we will have elliptic parabolic. 

Then, inertia is 2, 1, 0 that means, 2 positive eigenvalues, 1 negative eigenvalue. Then, 

we say it is hyperboloid of one sheet. Then, 1, 2, 0 is inertia, we have 1 positive value, 2 

negative eigenvalues. Then, we will have hyperboloid of 2 sheets. And when inertia is 1, 

1, 1. That means, we will have 1 positive, 1 negative and one 0 eigenvalue. Then, we call 

that surface as hyperbolic parabolic 1, 1, 2 represents a parabolic cylinder. 
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So, that is how we classify a different surface. Now, in this example you have to identify 

the conic section. So, the conic section is given, as x square plus y square plus z square 

minus 4 x y is equal to 4. It is a three dimension surface. So, to identity what it represent, 

we have to calculate it is inertia. For that, we have to first write down the corresponding 

matrix A. And terms in the diagonal are 1, 1, 1. And this minus 4 corresponds to minus 2 

and minus 2, in this position in the matrix A. 

Then, we calculate the eigenvalues. For this, we consider the characteristic equation as 

this. And this simplifies to this equation characteristic equation, lambda minus 1 

multiplied by lambda minus 1 square minus 4. And further simplification will give me 

lambda, minus 1 minus 2 and lambda minus 1 plus 2. So, then eigenvalues are given 

from this expression, and they are 1 minus 1 and 3. So, we will have two positive 

eigenvalues namely 1 and 3. And one negative value minus 1. So, the inertia for this 

given matrix is 2, 1, 0. And according to the classification, this surface is hyperboloid of 

one sheet. 
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Now, we will discuss positive definite quadratic forms. Many times, we are interested to 

know the sign of this expression a x square plus 2 b x y plus c y square, it is a quadratic 

expression. Let us say is equal to d and in matrix location, we write it as x transpose A x. 

So, we want to know, whether this expression is positive or negative. So, we want to 

know under, what condition this expression is positive. Under what condition it may be 

negative and under what conditions, it is always positive. 

So, those conditions refer to positive definite quadratic form. So, I will define the 

quadratic form is positive definite. If x transpose A x is always positive, for positive x 

and it is 0 only when x is equal to 0. So, expression x transpose A x, if it is always 

positive. Then, that expression is or that quadratic form is positive definite. The 

quadratic form is positive semi definite when d can be positive for some nonzero x. It 

may be positive for other values. But, there may be some value of x which is not 0, but d 

is positive. The quadratic form is negative semi definite, when d can be negative for 

some nonzero x also. 
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So, a symmetric matrix A and the quadratic form x transpose A x are positive definite is 

x transpose A x is positive for x not 0. We call then the form as negative definite, when x 

transpose A x is negative for some for x not 0. And positive semi definite is x transpose, 

A x maybe positive or maybe 0 for all x. Negative semi definite, when x transpose A x is 

negative for all x, negative or 0 for all x. And we say the form is indefinite, if we cannot 

determine the sign of x transpose A x. 

If it is positive always, we call it positive definite. If it is negative always, then we call it 

negative definite for nonzero values of x. And a positive semi definite or semi indefinite, 

negative semi definite, when we will have this expressions, and if the sign cannot be 

determined, then it maybe indefinite. 
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The quadratic form is indefinite. When d can be both positive and negative, we can take 

any value. So, in this example, we try to decide the positive definiteness of the given 

quadratic form. So, in the first we have the associated matrix as 1 1 1 5. In the second, 

we will have the associated matrix 1 3 3 1. And in the third, we will have this matrix, we 

will go one by one. 

This matrix is associated, with this quadratic expression x square plus 5 y square plus 2 x 

y. We can write down this form as x plus y whole square, I am rewriting this expression 

plus 4 y square. See x plus y square is equal to x square plus y square plus 2 x y. So, 2 x 

y is coming here and y square I have taken from this. So, what remains here is 4 y 

square, now this expression is 0 when x is equal to 0 and y is equal to 0. And for all 

values of x, what whether positive or negative this expression will always be 0 or we can 

say that this expression is positive definite. Or this quadratic form is positive definite 

quadratic form is positive definite. 
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In the second example, I have this matrix. And corresponding to this matrix, I have this 

form x square plus 6 x y plus y square. And this form, I write it as x plus 3 y whole 

square minus 8 y square. And one can notice that, for x is equal to minus 2 and y is equal 

to 1. Then, this term will be more than this term; and that makes q x negative. So, this is 

not positive definite, because it is sign will be q x is negative for value x is equal to 

minus 2 and y is equal to 1. So, this is not positive definite. 

In the other example, the 3 by 3 matrix it is a diagonal matrix. It comes out to be x 

square plus 2 y square minus 3 z square. One can notice that, if x is equal to 0 y is equal 

to 0. Then if z is, whatever be the values of z, then this is negative. So, it is again not 

positive definite, so 0, 0, 1, q x is negative and it is not positive definite. 
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Now, in this theorem we will like to state the conditions under, which we can ensure that 

a given quadratic is always positive definite. So, the theorem states that, the three 

conditions, the following three conditions are equivalent. One condition is if q x is 

positive definite. Second is all the eigenvalues of A are positive, third is all the sub-

matrices have positive determinants. So, I will start with a given quadratic x i transpose 

A x i is positive. 

I will first prove that a implies b means, if q x is positive definite. Then, it implies all the 

eigenvalues of A are positive. So, with this given positive definite form, let us consider 

an eigenvalue problem A x i is equal to lambda i x i. Now, in this form A is a symmetric 

matrix. So, for this form we can multiply this matrix by x i transpose from left, as well as 

on the right. So, x i transpose A x i is equal to lambda x i transpose x i. And we know x i 

transpose x i is nothing but the norm of x i which is always positive. 

So, x transpose A x i is always positive provided lambda i is positive. So, if a given form 

is quadratic definite, then all the eigenvalues of A should be positive. So, I have started 

with positive definite form. And I have proved that it has all eigenvalues, which are 

positive, so a implies b. 



(Refer Slide Time: 54:14) 

 

Now, to consider b implies a, I will start with all positive eigenvalues. And I will show 

that the corresponding matrix is positive definite. So, assuming all lambdas are positive 

and the matrix A is symmetric, because this matrix is related with the quadratic. Then, 

the eigenvalues form set of n independent eigenvectors. This is the result, which I am 

deriving from my earlier lectures on eigenvalues and eigenvectors. So, they form n 

independent eigenvectors. 

So, we can write down x, any vector x as a linear combination of these n independent 

eigenvectors. So, will have x is equal to c 1 x 1 plus c 2 x 2 plus c n x n I multiply it by 

A. So, A x is equal to c 1 A x 1 plus c 2 A x 2 plus c n A x n; then I multiply it by x 

transpose pre-multiplication. So, it is x transpose A x is equal to c 1 x 1 plus c 2 x 2 plus 

c n x n, this is x transpose. X transpose is x is nothing but this is x transpose multiplied 

by c 1 A x 1 plus c 2 A x 2 plus c n A x n, whatever I have obtained here. And then if 

you perform this multiplication it is column this it is transpose. So, if we multiply this 

will have c 1 square lambda 1 plus c 2 square lambda 2 plus c n square lambda n square. 
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Since c’s are arbitrary, so x transpose A x is positive. And that means, eigenvalues are 

positive, because the eigenvalues are positive will have x transpose A x is positive. And 

that means, we will have positive definite quadratic form. So, we have started with 

positive eigenvalues. And we could prove that, we have positive definite quadratic form. 

So, b implies c is proved, now let us try a implies c. 

So, given that q x is a positive definite, this that is the meaning of a. We assume we are 

having eigenvalues are positive, because q x is positive definite. So, b means eigenvalues 

are positive, so we have this. Then, what is determinant of A, determinant A is product 

of eigenvectors. Now, we consider x transpose A x as x k 0. What is x k transpose is a 

vector, which is having nonzero values and rest of them are zeros. 

So, I reduce this matrix A into k by k matrix, that is A k and rest of them are these 

elements in A. So, I write it as x k transpose and rest of the elements are 0. So, I am 

considering only those values, which are corresponding to A k they are nonzero and rest 

of them are 0. So, this particular x transpose is chosen. So, accordingly we will have this 

column vector. So, when we perform this multiplication, I will have x k transpose A k x 

transpose, but x transpose A x is positive. 

So, x k transpose A k multiplied by x k transpose is positive provided determination of A 

k is positive. This means the sub matrix A k has positive determinant. But, what is A k, 

A k is a sub matrix of A. And this can be any order matrix, it can be order 1, order 2, 



order there. And so on, in fact this result should be true for all values of k. And that 

means, if we have a positive definite form. Then, all sub matrices will have positive 

determinant. 

Now, that proves c that means, starting from a we can prove the c, the reverse of this that 

is if we have a matrix having all sub matrices determinant 0. Then, we can prove that it is 

a positive definite form that is c implies a. I leave this is an exercise for the viewer. In 

this example, we are using the theorem, which I have just now stated. And with the help 

of that theorem, we like to see whether a given quadratic form is positive definite or not. 
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So, if in the first example if I have a 2 by 2 matrix, then one can notice its determinant is 

1 into 5 minus 1 is positive. And since, it has a positive determinant and all sub matrices 

have positive determinant. So, it has all positive eigenvalues and it is a positive definite 

form. So, first is positive definite form, but in the second case first sub matrix is having 

determinant positive. 

But, if you consider this sub matrix, then it is determinant is 1 minus 9 is negative. So, it 

is not positive definite and in the third case again one of the eigenvalue is negative. So, 

again this is also not positive definite form. So, in this example, we will have only one 

positive definite form. In the second example determinant is negative, so will have will 

not have a positive definite form. 



In this example, one eigenvalue is negative, then it is this is also not positive definite 

form. So, only one is positive further if A is positive definite matrix. Then, A square is 

also positive definite, I leave this as an exercise for the viewer to prove this. Further, if A 

inverse is also positive definite, if A is positive definite. So, these are two exercises user 

can try easily. 
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That gives that comes with this we come to the end of the lecture. Today, we have 

covered quadratic surfaces. We have discussed, when under what conditions a given 

quadratic form is positive definite quadratic form; that is all. 

Thank you. 


