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Welcome viewers, today we are going to discuss Linear Transformation. I will start with 

the summary what we have done in my last lecture. In my last lecture I have started with 

the definition of linear transformation, I have discussed some properties of linear 

transformation. Such as, that if T is linear transformation and theta 1 and theta 2 being 

the identity elements of the vector space V and W, then T of theta 1 is equal to theta 2. 

That is theta 1 will map to theta 2. 
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Then, T of alpha minus beta is equal to T of alpha minus T of beta, image of T is a 

subspace of W, image T being the range set for the transformation T. And kernel T 

subspace of V. We are further discuss that dimension of V is equal to dimension of 

kernel T plus dimension of image T. We have also discuss the T is one to one, then 

kernel T is theta itself. 
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This lecture includes, singular and non-linear transformations, composite linear 

transformation, invertible transformation, matrix representation of transformation, some 

examples and some results. 
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To start with I will define what do you mean by a singular, in linear transformation for 

this. Let us say T is a linear transformation from the vector space V into W. Then, this is 

singular if the range of some nonzero vector under this transformation is theta. That 



  

means, there exist some vector V belonging to V. Such that T v is equal to theta, then v 

is not 0. 

And transformation is set to be non singular, if and only if there exist theta belonging to 

V which maps into theta belonging to W. That means kernel T is equal to theta. Now, we 

have earlier proved that T is one to one implies kernel T is equal to theta. And that 

means, the T is nonsingular when T is one to one. So, many times we take this as a 

definition for nonsingular transformation. That if T is nonsingular, then T is one to one 

linear transformation. 
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Now, the T is a linear transformation from U to V it is a one-one linear transformation. 

And the vectors u 1, u 2, u n belonging to U are linearly independent vectors. Then, that 

images T u 1, T u 2, T u n are also linearly independent vectors, this is a result which we 

have proved in my earlier lectures. Now, we will make use of this and then we can say 

that nonsingular transformation preserves linear independence. A linear transformation is 

nonsingular, but not onto one may notice that a linear transformation is onto, but not 

nonsingular. So, these two things are different. 
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Then, we come to composite linear transformation for this we need three vector spaces U 

V and W. So, let U, V, W are the vector spaces and we have two transformations T from 

U to V and S from V into W. Then, the composite transformation which we denoted by S 

composite T, which is from U to W is defined as S o T or we call it S composite T u is 

equal to S of T u for all u belonging to U. That means, if I have a vector u and U, then T 

u will be in V. So, if V belonging to v such that it is equal to T u, then S of v is equal to 

w for some w belonging to V and then we say, S composite T of u is equal to w. 
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I illustrate this with the help of this diagram, in which I am showing three vector spaces 

U, V and W. And two linear transformations T from u to v and s from v to w, which 

means a member u in U will go to v in V under the transformation T. And the same v 

under is transformation s will go to w. And that means, this is a transformation which 

will take u to w and this transformation is called the composite transformation S T. 
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On the basis of this, I will establish certain results in the form of theorem. So, if we have 

a linear transformation T from the vector space U into V. And another transformation S 

from V into W, then S o T is also linear transformation. That means, if T s and T are 

linear transformation, then composite of these two will also be a linear transformation. 

To prove this, we will consider alpha u 1 plus u 2 belonging to U. And we will prove that 

S o T of alpha u 1 plus u 2 is equal to alpha times S o T of u 1 plus S o T of u 2. We start 

with the left hand side S composite T means, S of T alpha u 1 plus u 2. So, if first operate 

this transformation T on this element, and since T happens to be a linear transformation. 

So, T of alpha u 1 plus u 2 in the next step will become alpha T u 1 plus T of u 2 these 

are basic definition of the linear transformation. And then this will become alpha S of T 

u 1 plus S of T u 2 because, S is also a linear transformation. 

So, applying this linear transformation twice, once for T next time for S we will get left 

hand side equal to right hand side. And that proves the result that S o T is a linear 



  

transformation. So, given two linear transformation their composite is also a linear 

transformation. 
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Now, let us see what do we mean by a composite transformation with the help of an 

example. So, we have a linear transformation S from R 2 to R 2 here, S x y is defined as 

x plus y and x minus 2 y. So, an element x y in R 2 will map to x plus y comma x minus 

2 y under the transformation S. And another linear transformation T defined by a T of x 

y equal to x comma y minus x. 

So, the question is to compute T composite S for the element1 comma 1 and S composite 

T for the element1 comma 1. So, let us see what happens I start with T o S of 1 comma 

1, this means we first operate S. So, S linear transformation on the element 1 comma 1. 

So, S operated on to the vector 1 comma 1 gives me 1 plus 1, see the definition x plus y 

here x and y are 1, so it is 1 plus 1 comma x minus 2 y. So, it is 1 minus 2. 

And that makes T of 2 minus 1, so this left hand side is equal to T of 2 minus 1. Then, I 

apply the definition for the second transformation T that is this definition. And this 

means x is equal to 2, so this is x and the second component will become y minus x y is 

equal to minus 1 and x is 2. So, it becomes minus 1 minus 2 and finally, it is 2 minus 3. 

So, T o S of 1 comma 1 is 2 comma minus 3 by S composite T on 1 comma 1 is equal to 

S T on 1 comma 1 minus 1. I am first using this definition x comma y minus x. So, it is 1 



  

comma 1 minus 1, so this reduces to S 1 comma 0. And now I apply this definition, so it 

is equal to 1 plus 0 x plus y comma 1 minus 2 this is equal to 1 comma minus 1. So, that 

is how we compute composite transformation. So, given two transformations one can 

use, one can obtain composite transformation. 
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Now, we come to inverse of a transformation, a linear transformation T from the vector 

space U into V is called invertible. If there exist a uniquely linear transformation S form 

V into U. Such that, S composite T is identity of the vector space u and T composite S is 

the identity of the vector space v. Now, both these things should be satisfied. 

If you can find such a transformation that these two composite transformation satisfy 

this. Then, we can say that the transformation is invertible. Here, I v is a identity 

transformation on U and this I v is the identity transformation on V. This was the first 

can be written as S composite T on u is equal to S T u is equal to u. So, u belonging to U 

and T composite S operated on v is equal to T S v is equal to v, so v belonging to V. 

So, this is equivalent to this and the second one is equivalent to this. Now, one can see 

that S reverse is the effect of T and vice the versa. One can notice that u under this 

transformation goes T u, but S will take it back u itself. So, S reverse is the effect of T 

here also v becomes S v under the transformation S and T will take it back again to v. So, 

we can say that S reverse is the effect of T and vice versa. 
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Further, if S is the inverse of T we denoted by T inverse and we say S is equal to T 

inverse. We say T is the inverse of S or we write T is equal to S inverse. Clearly, if T u is 

equal to v, then T inverse v is equal to u. As we said that, T inverse will all nullify the 

effect of this transformation, it will take it back. So, we apply T on u will become v, but 

T inverse will take it back v to u. Also if S v is equal to u then S inverse u is equal to v. 

Now, we have an important result it says that T is a linear transformation from the vector 

space U into V. And dimension U is equal to dimension V, then the following are 

equivalent that is T is invertible, T is nonsingular and T is onto. 
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This I illustrate with the help of this diagram. Here, I have a two vector spaces U and V, 

T is a transformation which takes x 2 T x. Now, T inverse is a transformation, which will 

take y 2 x. Now, since T is a transformation we said T has to be nonsingular. That 

means, only one element if there are two different elements here, then they will map to 

one element here. And then this mapping has to be onto, because we have to the same 

element by a back x. So, that is how we have the result we say that invertible, 

nonsingular and onto they are equivalent. 
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Now, we will prove this theorem, that if T is a linear transformation which is one-one. 

Then, T inverse from V into U is also a linear one-one transformation. To prove this, we 

first take a linear transformation T from U to V, which is given to be one-one linear 

transformation, we have earlier proved that such a linear one-one transformation will be 

nonsingular. 

So, with this we further assume the existence of T inverse from V to U, then if this 

happens to be a linear transformation. Then, we should prove that it is this T inverse is 

additive and homogeneous. So, first we consider two vectors v 1 and v 2 in V, then T 

inverse v 1 is equal to u 1 and T inverse v 2 is equal to u 2, this is our assumption. Then, 

first means v 1 is equal to T of u 1 and second means v 2 is equal to T of u 2, this is 

because of the definition of T inverse. 
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Then v 1 plus v 2 is equal to T of u 1 plus u 2. If you are convinced, then we can apply 

the linear property of linear transformation and what we can have that T is equal to u 1 

plus u 2. And this simply means v 1 plus v 2 is equal to T of u 1 plus u 2 and by the 

definition of inverse T inverse of v 1 plus v 2 is equal to u 1 plus u 2. And that is what 

we need to prove that this is additive. 

The second is alpha v 1 is equal to alpha T u 1, which is equal to T times alpha u 1 T 

being a linear transformation. So, from alpha v 1 is equal to T of alpha u 1 we can write 

down T inverse alpha v 1 is equal to alpha u 1 or it is equal to alpha times T inverse u 1. 

So, homogenous properties also satisfy. And hence, one can say that T inverse is also a 

linear transformation. 

So, if T is linear then T inverse is also linear provided it is one. To prove that T inverse is 

one-one, we consider two different elements in v, say v 1 and v 2 which are not same. 

Then, we have to prove that T inverse v 1 their images are also be different in u. So, we 

start with v 1 not equal to v 2, then we will prove that T inverse v 1 is not equal to T 

inverse v 2. 

Now, u 1 is equal to T inverse v 1 and u is equal to T inverse v 2 with this v 1 is equal to 

T u 1 and v 2 is equal to T u 2. Since, T is one-one, so v 1, v 2 will be different, but you 

want u 2 different. So, T is one-one, so u 1 is equal to u 2 and hence T inverse is one-



  

one. So, if we have one-one linear transformation T, then T inverse is also a one-one 

linear transformation. 
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Now, in this example we will show that, the given linear transformation is one-one and 

onto. And if it is one-one and onto, then we will find it is inverse also. To start with T to 

be one-one it is penalty should be theta. That is how we proved? The T is one-one 

transformation. So, let us consider an element a, b, c belonging to kernel T, we will 

prove that a, b, c actually has to be 0 if it has to belong to kernel T and only then T 

inverse may exist. 

So, let us have a, b, c belonging to kernel T. And since a, b, c belongs to kernel T, so it 

can be written as a e 1 plus b e 2 plus c e 3. That is any vector in R 3 can be represented 

as a linear combination of the base vectors e 1, e 2, e 3. Then, we apply linear 

transformation on this. So, T of a, b, c is equal to 1 T of a e 1 plus b e 2 plus c e 3 and 

this is equal to theta. 

That is what we have assumed? That is what we have started with, so we have T of this 

is equal to theta. So, let us apply on this vector; that means, we can write down a times T 

e 1 plus b times T e 2 plus c times c 3 is equal to theta, because T is a linear 

transformation. Next, we can apply this definition, which is given to us T of e 1 

according to definition T of e 1 is e 2 plus e 3. So, it is a times e 2 plus e 3 plus b times T 



  

of e 2 which is e 1 plus e 2 plus e 3 that is what has been given to us plus c times e 1 plus 

e 2 which is T 3. 
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So, you simplify this and collecting different terms we will have b plus c e 1 plus a plus 

b plus c into e 2 plus a plus b into e 3 is equal to theta. So, we have collected different 

terms e 1 is coming from b as well as from c, e 2 is from a, b and c similarly e 3 is a plus 

b. So, we will have this expression and this is a vector expression. So, each of this 

component should be 0, so b plus c is equal to 0 a plus b plus c is to be 0 and a plus b 

equal to 0. 

Now, we have three equations and three unknowns a, b and c from this a is equal to 

minus b and from this b is equal to minus c. If you substitute this in this equation will 

have a, b and c equal to 0. That means, we have started with a non zero vector a, b, c, but 

ultimately that vector comes out to be 0. That means, we will have only one vector in 

kernel T that is the identity vector and; that means, T is a one-one mapping. 
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Now, the mapping T is this linear transformation T is R 3 to R 3. The dimension of V is 

3 dimension of kernel T is 0 why because, it is one-one transformation. So, nullity is 0, 

so from nullity and right nullity theorem will have dimension of image T is equal to 3. 

Now, image T is a subset of R 3 and that means, image T is nothing but R 3. Therefore 

image T is the same as R 3. And that means, the transformation which is given to us is 

not only a one-one it is onto. And accordingly, the inverse transformation exist that is 

forgiven u belonging to R 3, there exist V belonging to R 3 such that T inverse v is equal 

to u. 
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Now, for this I consider the vector v as c 1, c 2, c 3 belonging to R 3, which is a linear 

combination of the base vectors e 1, e 2, e 3. So, we write down v as c 1 e 1 plus c 2 e 2 

plus c 3 e 3. So, applying T inverse we will have T inverse v is equal to c 1 or T inverse e 

1 plus c 2 of T inverse e 2 plus c 3 of T inverse e 3, this we are getting, because T inverse 

is also a linear transformation, so applying T inverse on this means applying T inverse on 

these separately, so we have this expression. Now, we can find T inverse e 1 T inverse e 

2 T inverse e 3, then the transformation will be known. So, if v is given to us, then from 

this we can find out the transformation if T inverse e 1 and T inverse e 2 and T inverse e 

3 are known. 

Now, what is given to us is T e 1 is equal to e 2 plus e 3 T of e 2 is equal to e 1 plus e 2 

plus e 3 T of e 3 is equal to e 1 plus e 2. We are trying to find out T inverse e 1, T inverse 

e 2 and T inverse e 3 and if you can find that we can find out the inverse transformation. 

So, that is what we are going to do here, so we write down from this we can write down 

e 1 is equal to T inverse e 2 plus T inverse e 3. 

So, I have applied T inverse here and using the property that T inverse is a linear 

transformation I can write down e 1 is equal to T inverse e 2 plus T inverse e 3 from this 

second expression I am writing e 2 is equal to T inverse e 1 plus T inverse e 2 plus T 

inverse e 3 and from the third e is equal to T inverse e 1 plus T inverse e 2. So, now we 

can solve these two equations from this we can write down T inverse e 1 is equal to e 2 

minus e 1 and from the third T inverse e 3 is equal to e 2 minus e 3, here I am using the 

linear property of T inverse. 
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So, once we get T inverse e 1 is equal to e 2 minus e 1 and T inverse e 3 and e 2 minus e 

3, then we can substitute in the second equation to get T inverse e 2. So, from this T 

inverse e 2 is e 2 minus e 2 plus e 1 minus e 2 plus e 3 and that simplifies to e 1 minus e 

2 plus e 3. So, we get T inverse e 1 we know what is T inverse e 2 and we know what is 

T inverse e 3 and that means, we can find out what is the image for the vector v it is c 1, 

c 2, c 3. 

So, we can write down T inverse v as linear combination c 1 T inverse e 1 plus c 2 T 

inverse e 2 plus c 3 T inverse e 3 and that means, T inverse v is determined. And 

substituting these values T inverse v is equal to c 1 e 2 minus e 1 plus c 2 e 1 minus e 2 

plus e 3 plus c 3 e 2 minus e 3. Simplifying it, T inverse of c 1, c 2, c 3 it is a vector v is 

equal to c 2 minus c 1 e 1 plus c 1 minus c 2 plus c 3 e 2 plus c 2 minus c 3 e 3. So, given 

a vector c 1, c 2, c 3 we can find out its inverse transformation T as this. 
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So, this transformation which was given to us is invertible and we can find the 

transformation also. Now, in the next example we will take a linear transformation 

defined as T of e 1 is equal to e 1 plus e 2 T of e 2 as e 3 minus 2 e 2 T of e 3 as e 1 

minus e 2 plus e 3. And then we will see that, this is not this does not have an inverse. 
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To prove this, we will see that it is not a one-one transformation and for this purpose. We 

will compute first the kernel of T, we will see that the kernel of T has some member a, b, 

c which is not 0, but still T, b, c is theta. So, let us assume that a, b, c is a non zero vector 



  

belonging to kernel T and T a, b, c is theta or T we write down the vector a, b, c is a 

linear combination of base vectors e 1, e 2, e 3. So, T of a e 1 plus b e 2 plus c of e 3 is 

equal to theta. 

And we know that T is a linear transformation. So, we can write it as a times T of e 1 

plus b times T of e 2 plus c time T of e 3 equal to theta. And then we will make use of 

definition T e 1, T e 2, T e 3 has been given to us, we write down a times e 1 plus e 2 that 

is the value for T e 1 plus b times e 3 minus to e 2 expression for T e 2 plus c times T e 3. 

That is e 1 minus e 2 plus e 3 and this is equal to 0. 

Then, we collect different terms e 1 first, so it is from here it is a no contribution from 

this and here we have c. So, we will have a plus c times e 1 plus the next is e 2, so a is 

coming from the first term a minus 2 b minus c times e 2 plus b plus c no contribution 

from this. So, we will have this expression equal to 0. And that means, a plus c is equal 

to 0 plus a minus 2 b minus c equal to 0 and b plus c equal to 0. So, the three components 

are going to be 0, so the we have three questions in three unknowns a b c. 

So, from first equation we can say a is equal to minus c from the third equation we say b 

is equal to minus c. And when we substitute these values in the second equation, we can 

say c is equal to k and a is equal to minus k and b is equal to minus k. So, this value is 

coming from this equation. That is what we are getting from the second equation a minus 

2 b minus c is equal to minus k minus 2 times minus c minus k is equal to 0 and that 

gives me the value of c. 
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And accordingly the vector form minus k minus k, k belongs to kernel T k can be any 

scalar and it may be 0 also, but it may be non zero. That means, there exist a non zero 

vector in kernel T. So, kernel T is not nearly 0 it has some more vectors and that means, 

it is not a one-one transformation. And of course, according T inverse does not exist in 

such a case. 
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So, we have proved that T inverse does not exist in such a case. And then in this result 

we are summarizing what we have done, so far. We have a vector space V of dimension 



  

n and we have an operator T from V to V, we call it a linear operator. Then, the 

following statements are equivalent T is one-one, T is onto kernel T is equal to theta and 

only in identity vector, nullity T is equal to 0 in this case, image T is equal to V and T is 

nonsingular. So, this is what we have done for the linear transformation. 
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In the next part of my lecture, I will be discussing matrix representation of a linear 

transformation. Now, let us consider T is a linear transformation from the vector space V 

into W, let B 1 is a order basis for V vector space V consisting of v 1, v 2, v n is an n 

dimensional vector space. Then, any vector v in V can uniquely be expressed as v is 

equal to c 1 v 1 plus c 2 v 2 plus c n v n, this is true, because this is a basis for the vector 

space v. 

So, any vector in V can be expressed in terms of it is base vectors. So, c 1, c 2, c n will 

then be called as a coordinates of v with respect to this is B 1. Now, let us say w is equal 

to T of v that is, this is equal to T times c 1 v 1 plus c 2 v 2 plus c n v n. So, T being the 

linear transformation one can write down this as c 1 times T of v 1 plus c 2 times T of v 

2 plus v 1 times T of v n. So, this transformation T of v is expressed in terms of images 

of the base vectors v 1 v 2 and v n. So, this vector w is represented as a linear 

combination of T v 1, T v 2 and T of v n. 
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That means, to specify T it is enough to specify the vectors T v 1, T v 2 and T v n. But, 

what is T v 1, T v 2, T v n these are vectors in W. And let us say W has a basis B 2 

consisting of w 1, w 2, w m is an ordered basis for w, this happens to be an m 

dimensional vector space. So, we will have only m vectors. Then, any vector v j, v j is a 

vector in the basis B 1. 

So, T of v j is equal to a 1 j w 1 plus a 2 j w 2 plus a m j wm, what I am going to do here 

is I am trying to express T v j in terms of the base vectors w 1, w 2, w m these are the 

scalars, so T v j is equal to this for all j is equal to 1 to n. Now, the transformation is 

completely determined with the vectors a i j, if I know these coefficients a 1 to a 2 j a m j 

for all j is then I know the transformation. So, that is how we write down T v j, so if 

forgiven v j the coefficient a i j are arranged in the j'th column of the m by n matrix a. 

Then, this matrix determines a transformation T, it has j'th v j is a j'th vector. So, what 

we do is we try to arrange these coefficients in the j'th column for T v j. 
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And that is we have the matrix A. So, given the basis and the matrix A, the 

transformation is completely known. The matrix A will be an m by n matrix why 

because, we are having n vector. So, we are going to have n columns and in each column 

there will be m vector, so we will be having A m into n m rows n columns. 

So, this represents the transformation from an n dimensional vector space v to n 

dimensional vector space W. The matrix of transformation is always with respect to 

order basis. This is the point which you have to remember and we change basis the 

matrix of transformation will be different. And that is why, they can be multiple matrices 

representing the given transformation depending upon the basis you consider. This is 

because, entries in the matrix depend on the basis they are being chosen. So, for different 

basis we may have different representation for the matrix A the transformation remains 

the same. 
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Now, we have a theorem if we have a linear transformation T from a n dimensional 

vector space V into an m dimensional vector space W and B 1 is a basis for B and B 2 is 

a basis for W and B is equal to c 1, c 2, c n transpose is a column vector with the 

coordinate vector x in v with respect to this is B 1. And w is equal to equal to d 1, d 2, d 

n transpose with the coordinates of y in w with respect to basis B 2, then T of x is equal 

to y means A v is equal to W. So, with the transformation T we can associate a matrix a 

such that A v is equal to w. So, for a given transformation T x is equal to y, we can 

associate a linear transformation A, such that Av is equal to w. 

(Refer Slide Time: 37:51) 

 



  

Now, if we have T linear transformation from V to W or we can say T is a 

transformation from R n to R m. Then, w which is a column vector m by 1 is equal to the 

matrix A and m by n matrix multiplied by the column vector n by 1, so this is what we 

have. So, if A is an m by n matrix, then A defines a linear transformation from R n into R 

m by sending the column vector v in R n to the column vector w in R m. So, the matrix 

A defines the linear transformation T. So, with every linear transformation there is an 

associated matrix A. 
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Now, matrix of an identity transformation, so if we have a transformation T from V to V. 

Then, the identity transformation means every x in V will map to T of x or T of x will be 

x itself. So, if I have a vector c 1, c 2, c n that is that will map to A c 1, c 2, c n. Then, 

this relationship is possible provided a i j is equal to 1, whenever i is equal to j and 0 

when i not equal to j. 

So, if we can have such a i j’s then this is possible and this will be such a this will be 

such a matrix for the given linear transformation T. And if we now require the definition 

for the identity matrix this is nothing but, the definition of identity matrix a i j is equal to 

1, then i is equal to j. That means, in columns we have in the diagonals we have 1 and 

rest of the elements are 0. So, such a matrix is an identity matrix or we can say this 

identity matrix is a associated with the identity transformation T. Similarly, the 0 

transformation from V to V the associated matrix is the 0 matrix. 
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Now, in the next example a transformation has been given to us from R 2 to R 3, we 

have to find out the associated matrix for this the basis for R 2 is given as B 1 consisting 

of two vectors v 1, v 2 as 1 minus 1 and 2 0. While the ordered basis for R 3 is provided 

as 1 1 0 1 0 1 and 0 1 1, these basis have to be specified. Because, the matrix depend on 

the basic if we change the matrix, if we change the basis the matrix will be different, we 

have to find the matrix representing the transformation. 
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So, for the solution we start with the definition T x 1 x 2 is given to us as 2 x 1 minus 3 x 

2, second component is x 1 and third component is x 2 plus 5 x 1. So, we first see how 

these images, how these basis elements map to the image set. So, T 1 minus 1 is equal to 

5 1 4. Let us see how x 1 is 1 and x 2 is equal to minus 1, so 2 x 1 minus 3 x 2 is 5 x 1 is 

1 and x 2 plus 5 x 1 that comes out to be 4. 

The second element second vector 2 0 will map to 4 to 10 in R 3 like x 1 is 1 x 2 is 0, so 

when we substitute it here it will be 4 2 and 10. Now, we try to represent the vectors 5 1 

4, 4 to 10 in terms of the basis B 2, so 5 1 4 is represented as a linear combination of 

basis 1 1 0, 1 0 1 and 0 1 1. So, we have to determine a 1, a 2, a 3, so that this matrix 

equation is satisfied. 
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For this purpose I will say a 1 plus a 2 is equal to 5 a 1 plus a 3 is equal to 1 a 2 plus a 3 

is equal to 4. And then we solve these three equations in three unknowns a 1, a 2, a 3 we 

will get a 1 is equal to 1 a 2 is equal to 4 and a 3 is equal to 0. That means, we have 

obtained the image of the first vector in terms of the base elements. So, this is for the 

second 4 2 10 we will express it as b 1 1 1 0 plus b 2 1 0 1 plus b 3 0 1 1. 

So, it is a linear combination of these vectors and again we have three equations 4 is 

equal to b 1 plus b 2 2 equal to b 1 plus b 3 and 10 equal to b 2 plus b 3. These three 

equations are solved simultaneously and the solution comes out to be b 1 is equal to 

minus 2, b 2 is equal to 6, b 3 is equal to 4. So, we can say the matrix A is 1 4 0 and 



  

minus 2 6 and 4, how we get this matrix, this first is this is the representation the first 

vector T e 1 and this is the representation of the second vector 4 2 10. 

So, second matrix and second vector that we say it is an ordered basis. That is why we 

first write down the first vector, and then we write down the second vector. So, 

corresponding to 4 2 10 we have this column and corresponding to the earlier vector we 

have this column 1 4 0. So, this is the matrix associated with the given linear 

transformation. That is how we obtain the matrix for the given linear transformation. 
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Now, we say that every m by n matrix A can be identified with the linear transformation 

T from R n to R m and the range of an m by n matrix is the space of it is column vectors 

in R m, we are having in the matrix A we are will be having vectors in R m. So, the 

range space of that will be the range of the matrix. The rank of A is a maximum number 

of linearly independent column vectors of A, that is how we defined rank of the matrix 

A. 

A will have number of column vectors. So, then independent column vectors will 

constitute the base vectors for the matrix a for the space. And that is why we say that 

rank of A is a maximum number of linearly independent column vectors of A. Then, the 

kernel of A is a set of all vectors x in R n such that A X is equal to 0. All these 

definitions are actually taken from the definition of linear transformations, only thing 



  

once we have identified the linear transformation and matrix representation one can very 

easily write down these things. 
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And accordingly, then nullity of A is the dimension of it is kernel. A linear 

transformation from R n to R n 1 is 1 to 1 if and only if it is onto this is the result, which 

we have obtained earlier, only thing is we have written for the matrix n by n matrix A 

will be one-one linear transformation if it is range is the whole space. In other words, the 

linear transformation is one-one if it is rank is n and this means that the maximum 

number of linearly independent vectors is n. 
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And accordingly a square matrix is nonsingular if and only if it is column vectors are 

linearly independent. This is the result which we have started a square matrix is a linear 

transformation is a nonsingular if it is a linear transformation we have defined has to be 

nonsingular if kernel T is equal to theta. And then with the help of the results, which we 

have establish just now one can very easily say that a square matrix is nonsingular if and 

only if it is column vectors are linearly independent. 

We will consider a linear transformation T from R 2 to R 2. And other transformation S 

from R 2 to R 2, R 2 to R 3 which I defined as T u 1 u 2 will map to u 1 minus u 2 

comma u 1 plus u 2 and S u 1 comma u 2 to twice u 1 plus thrice u 2 u 1 plus u 2 and u 1 

minus u 2, now we have to obtain the composite transformation S composite T. 
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We start with the standard basis for R 2 then T of e 1 is equal to T of 1 0 is 1 1, T of e 2 

equal to T of 0 comma 1 is equal to minus 1 and 1 according the definition being given 

to us. Therefore, v is equal to T u can be expressed as this matrix 1 1, this first column 

and the second image of second vector is minus 1 1, this is I express as this column. So, 

this is the matrix representation for the given transformation. 
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Similarly, for the second we say w is equal to 2 1 1 3 1 minus 1 is the second matrix 

associated with the transformation. Now, let us say w belongs to image set of S and v 



  

belongs to image set of T, then S o T is a transformation from R 2 to R 3 and it is given 

as S composite T u is S of T u u belonging to R 2. 

And since this is being given to us this w is equal to B v being given to us. So, I simply 

substitute the matrices. So, w is equal to 2 1 1 3 1 minus 1 and this v is 1 minus 1 1 1 u 

or if you multiply these two matrices, what we can get w as product of 2 matrices 5 1 2 0 

0 minus 2. 
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So, that is how we can say that the matrix representation of the composite transformation 

S o T is the product matrix B A. Now, let V be an n dimensional vector space having 

basis as S and T is an invertible linear operator. Then, A be the matrix representation 

with respect to basis of S. Then, A inverse is the associated matrix representation of the 

transformation T inverse with respect to S. 

So, a vector space being given to us a transformation is given to us associated with this 

transformation we have a matrix A given to us. Then A inverse is the associated matrix 

representation of the transformation T inverse with respect to the basis S. 



  

(Refer Slide Time: 50:28) 

 

So, this is what we have to prove. So, to proof this we consider that T is invertible and 

since it is invertible. So, we can say T composite T inverse is equal to I. So, there exist T 

inverse for the given transformation T such that T composite T inverse is equal to I. Let 

the matrix associated with the transformation T inverse is B, the matrix associated with 

the identity transformation is we know is an identity matrix. 

So, the matrix associated with T composite inverse is A B. Therefore, A B is identity 

matrix and from here we conclude that B is equal to A inverse by this I mean to say that 

if a given transformation to us as T it is associated matrix is A if the transformation is 

invertible. Then, we can very easily find out the matrix associated with the inverse 

transformation that is A inverse. 

So, the two things are related, now with this we come to an end of this lecture. This 

lecture is related with the linear transformation, we have continued with our earlier 

lecture. So, in this set of two lectures we have covered concept related to linear 

transformation I have started with the definition, some basic results are given. And 

finally, I have to represent a linear transformation as a matrix. And then we relate certain 

more results and the next time we will discuss rank and other related concepts. 

Thank you. 


