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A welcome viewer, today’s topic is Inner Product. But, before I start inner product, I 

would like to give an example on the theory, which we have developed in the last lecture 

regarding change of basis. 
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We have developed some results like V S is equal to P T S, V T. But, we could not take 

up examples to illustrate this result. Today, I will start with this example first illustrate 

this and then I will go to the inner products. Now, to start with, let us say V is a vector 

space of dimension n, S and T, be it is two subspaces. S consisting of v 1, v 2, v n is a 

basis for S and T is w 1, w 2, w n. This is for V. 

Now, let us say the vector v can be expressed as V s in terms of the vectors v 1, v 2, v n. 

And V T in terms of bases w 1, w 2, w n. Then, relationship between V s and V T, we 

this we have derived in my last lecture as V s is equal to P S T a matrix, multiplied by a 

column vector V T. This matrix is called transition matrix. And it is called transition 

matrix from T to S. 



 

Now, to illustrate this, we have to find out a i j. What is a i j? A i j is a typical element of 

this matrix. Now, to get a i j, we have to solve n systems of order n by n. So, let me 

illustrate this with an example. 
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So, let us consider S a subspace of R 2 consisting of bases 1 comma 2 and 0 comma 1. 

And another bases T 1 comma 1, 2 comma 3, these are two bases for R 2. We have to 

find the coordinates of vector V, which is 1 comma 3 and 5, 4 with respect to basis T. 

This is first part. In the second part, we have to find the transition matrix P S T from T to 

S to the basis S. 

Now, in the first part, you have to find the coordinates of V with respect to T. Now, this 

can be obtained from the solution of the system, which is obtained as 1 comma 3 is equal 

to a 1 comma 1 plus b 2 comma 3. That means, I want to express this vector 1, 3 as a 

linear combination of bases vectors 1 comma 1 and 2 comma 3 of the basis T. 

Now, to this, to get a and b, I have to solve this system. And the system is a plus 2 b is 

equal to 1, which is coming from the left hand side. And a plus 3 b, a plus 3 b is equal to 

3 from the right hand side. When, we solve this equation, this you can very easily solve 

it, subtract this from this. That will give me b is equal to 2. And substituting b is equal to 

2 in one of these equations, we get a is equal to minus 3. 



 

So, 1 comma 3 can be expressed as a linear combination of 2 vectors or we can say the 

representation of 1, 3 in the basis T is 2 comma minus 3. Similarly, the vector 5 comma 4 

is represented as a linear combination of basis vectors of T, a 1 comma 1 plus b 2 comma 

3. And we again solve the system of equations to get b is equal to minus 1 and a is equal 

to 7. And that means, 1 comma 3 in T basis representation is minus 3 comma 2, 5 comma 

4 is 7 minus 1 in the basis T. 
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Now, the second part is, to compute the transition matrix, you have to represent the 

vectors of T basis in S basis. That means, first, we consider the vector of S basis 1 

comma 1. We write down it as, a 1 comma 2 plus b 0 comma 1. And we solve it as we 

have done in early in the earlier part. So, a is equal to 1 and b is equal to minus 1 is the 

solution of this. 

Then, the second part 2 comma 3, this is the second vector in the basis. So, we express it 

again as a linear combination of 1, 2 and 0, 1. And, we form a system of equations as 

this. They are solved to get a is equal to 2 and b is equal to minus 1. Solving this, we 

write down the transition matrix. The first vector is written as the column of this 

transition matrix. This is w 1 and this is the second vector corresponding to 2 comma 3. 

So, this is the transition matrix. 

Now, let us try to verify the result, which we have developed. That is Vs is equal to P S 

T, V T. For this, we say 1 comma 3 S is equal to 1 comma 1. This can be obtained by 



 

solving as we have done here. And then we say 1 comma 1, this is V S is a transition 

matrix, which we have obtained here multiplied by V T, V T is the vector 1, 3 in T. This 

we have all ready obtained as minus 3, 2. 

And, if you really perform this multiplication, you can see that, 1 comma 1 multiplied by 

minus 3 plus 2 into 2 is 1. And, this 1 is equal to minus 1 into minus 3 minus 2. That 

comes out to be 1. So, the result is verified. Now, with this, we have completed the 

example and now, we go to the inner product. 
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So, the contents of this lecture consist of the definition of inner product. The inner 

product spaces, norm, distances, orthogonal vectors, orthonormal vectors, Gram Schmidt 

process. 
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To define inner product, let us consider V be any real vector space. An inner product on 

V is a function from V cross V 2 R. That means, a real number is assigned to each 

ordered pair u v of vectors denoted by u comma v. So, this notation, we use for inner 

product of u and v, provided it satisfies the following properties. The first property, we 

call it as positive definiteness. This means that v comma v, the inner product of v comma 

v is greater than equal to 0 and v comma v is 0. If and only, if v is a 0 vector in V. So, v 

comma v is 0, only when v comma v is 0. When, V is a 0 vector. This is the positive 

definiteness. And the second is the symmetric property. This means that inner product of 

u and v is the same as inner product of v and u, for all pairs of u and v in V. 
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According to the third property, u plus v comma w, the inner product is equal to inner 

product of u and w plus inner product of v and w for all u v and w in V. And the last one, 

c u comma v, inner product of c u and v is equal to c times, inner product of u comma v. 

For all u v in V and c being a real scalar. So, if it satisfies these properties, then an inner 

product is defined. 

On the basis of these four properties, the following properties can easily be derived. That 

is u comma c v is equal to c times, inner product of u comma v, because it is symmetric. 

So, c v comma u is the same as u comma c v. And then c can be taken out. So, u comma 

c v is equal to c times u comma v. And the third one the next property, which can be 

easily derived is u comma v plus w is equal to u comma v plus u comma w. And again, it 

is derived from the symmetric property. And then using the third property, one can easily 

arrive at this result. 
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Let us taken as an example. So, if we have a vector u in R n, u 1, u 2, u n and v as v 1, v 

2, v n. Then, if you define u comma v as u 1, v 1 plus u 2, v 2 plus u n, v n, then it 

defines a vector. Then, it defines an inner product. It defines inner product means, we 

have to verify, that it satisfies all the four properties, which we have described just now. 

So, to start with u comma u, u comma u is u is 1 square plus u 2 square plus u n square, 

because we are taking u at both the places. 

So, this is the inner product according to this definition. And this is a square of real 

numbers, sum of squares of real number, this always be positive. And this is 0, only 

when u 1 square plus u 2 square plus u n square is equal to 0. Since, all these numbers 

are positive. So, there sum will be 0, only when individual terms are 0, u 1, u 2, u n is 0. 

That means, u comma u is 0, simply means that, u is 0. So, that is the first part. And, if 

you u is equal to 0. Then, u 1 square plus u 2 square plus u n square is equal to 0. So, u 

comma u is 0 for 0 vectors. That proves the first part. 
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The second part is, that u comma v and v comma u are same. So, according to definition 

u comma v is u 1, v 1 plus u 2, v 2 plus u n, v n. And since u 1 and v 1 are real number. 

So, they can be commuted. So, u 1, v1 can be written as v 1, u 1. Similarly, the next term 

v 2, u 2 and the last term u n, v n is expressed as v n, u n. And again, the planning, the 

definition, we can see that, this is nothing but v comma u. And that means, the 

symmetric property is also proved. 

Now, the third property u plus v comma w. So, if we consider u plus v as u 1 plus v 1, u 

2 plus v 2, u n plus v n and w as w 1, w 2, w n. Then, by applying the definition of inner 

product, it is u 1 plus v 1 multiplied by w 1 plus u 2 plus v 2 multiplied by w 2 and so on. 

And the last term will be u n plus v n multiplied by w n. And since, these are nothing but 

simply real numbers. So, u 1 plus v 1 multiplied by w 1 is nothing but u 1, w 1 plus v 1, 

w 1. And u 2, v 2 multiplied by w 2 is u 2, w 2 and here we are writing v 2, w 2 and so 

on. 

This is possible, because these numbers are real numbers. And we have collected terms 

first for u 1, w 1 and second for v 1, w 1 etcetera. And that means, u plus v comma w, 

this inner product is equal to inner product of u w plus inner product of v w. And that 

proves the third property. The fourth property is c u comma v. So, we consider the right 

hand side by applying the definition c u 1, v 1 plus c u 2, v 2 plus c u n, v n, c can be 

taken outside.  



 

So, what we have is u 1, v1 plus u 2, v 2 plus u n v n. And this is nothing but c times the 

inner product of u comma v and that proves the last property. And this means, the 

definition which we have given, that is the definition of an inner product. 

(Refer Slide Time: 13:52) 

 

Now, the inner product defined in this example is called the standard inner product. And 

if you realize, then this inner product is the dot product of vectors. So, inner product is a 

generalization of dot product for vectors. This is, what we like to conclude and then inner 

product is actually generalization of dot product. And we can, in fact, it can be defined in 

many different ways. 
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So, in this example, we say that, this definition u comma v is equal to u 1 plus v 1 plus 

twice u 2, v 2 plus thrice u 3; v 3 also defines an inner product. So, the same way, as we 

have done for the earlier definition, we apply this. So, we again check the first property u 

comma u is equal to, according to the second definition; it is u 1 square u 1 and v 1. They 

are equal to u 1 square.  

The second term is twice u 2, v 2, u 2 and v 2 are equal. So, it is twice u 2 square the 

second term. And third term is 3, u 3, v 3. So, as u 3 and v 3 are equal, here we have u 

comma u. So, it is thrice u 3 square and again this is greater than equal to 0. And u 

comma u is 0, implies that u 1 is equal to u 2 is equal to u 3 is equal to 0. Because, all 

these terms are positive terms, they can be 0. When, individually each of them is 0. And 

that means, u comma u is 0 only when u is equal to 0.  

And of course, if u is equal to 0, that means u 1, u 2, u 3 are 0. Then, u comma u, u the 

inner product u comma u is also 0. So, that proves the first property for this definition. 

Now, comes the second property u comma v is equal to u 1, v1 plus twice u 2 ,v 2 plus 

3v u 3, v 3, according to the definition. Then, we can again commute individual terms. 

They are real numbers. So, we can have v 1, u 1 plus twice v 2, u 2 plus thrice v 3, u 3. 

And this simply means; that u comma v inner product is equal to inner product of v 

comma u. And that proves the symmetric property. 
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Third is, u plus v comma w is equal to u 1 plus v 1 w 1 plus 2 times u second component 

u 2 plus v 2 multiplied by w 2, plus 3 times the third component u 3 plus v 3 into w 3. 

Or, we can write it as u 1, w 1 plus twice u 2, w 2 plus thrice u 3, w 3 is plus v 1, w 1 

plus twice v 2, w 2 plus thrice v 3 w 3. That means, we are reorganizing terms in this 

particular manner. And then we can easily see that u plus v comma w is equal to inner 

product of u comma w plus inner product of v comma w. That proves the third property. 

And the fourth is c u comma w is equal to c u 1, w 1 plus twice c u 2 second term 

multiplied by w 2 plus thrice c u 3 multiplied by w 3. And then c can be taken out from 

each of these and that proves the final results c u comma w is equal to c times, the inner 

product of u comma w. And that establishes, that the definition, which is given to us is a 

definition for inner product. 

So, we can for R 3, we can have two types of inner product defined. One the way, we 

have the standard inner product, which we have defined earlier example, n is equal to 3. 

And this is another definition for inner product. So, for a vector space, we can define 

inner product in many different ways. So, more than one inner product can be defined on 

a given vector space. And this is the remark, which can be obtained from this example. 
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Now, we define inner product space. So, we say a real vector space V with an inner 

product is called an inner product space. So, to define an inner product space, what we 

need is, we have to define an inner product on a real vector space. Normally, R n with 

standard inner product is called as Euclidean n space. 

Now, few more definitions, suppose V is an inner product space. Then, the norm or 

length of vector u is denoted by this symbol. And is define as, we call it as norm of u as 

under root of inner product u comma u. This is one definition. And the another definition 

is, for the distance between 2 vectors u and v. And it is denoted by d u comma v and is 

defined as d u comma v is equal to norm of u minus v. 
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Now, let us illustrate this with example. So, compute lengths and distance between given 

vectors u 1 comma 1 comma 1 and v as 4, 0 and 3 with the standard inner product on R 

3. And weighted inner product, defined as u comma v is equal to u 1, v1 plus twice u 2, v 

2 plus thrice u 3, v 3. So, we solve it, we start with standard inner product on R 3. So, 

first, you have to find the length. 

So, length of the vector u, which is 1 comma 1 comma 1, it is defined as under root of 

inner product of u comma u, the standard inner product of u comma u. It is 1 plus 1 plus 

1. So, it comes out to be under root 3 by for the other vector 4, 0, 3. It is 16 plus 9; it is 

coming out to be 5. So, this is the length of 4 comma 0 comma 3. 
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The distance u comma v is norm of u minus v. And if will given u and v, it comes out to 

be norm of 3 comma 1, 3 comma minus 1 comma 2. And, it is inner product will be 9 

plus 1 plus 4. That comes out to be under root 14. So, distance between u and v on the 

standard inner product is under root 14. While, if we consider the weighted inner product 

defined as this. Then, the norm of u is 1 plus 2 plus 3 and this comes out to be under root 

6. 

While, for the second vector, it is 4 plus 3 comma 9, this is 3 and u 3 square is 9. So, it is 

4 plus 3 into 9 that comes out to be under root 31. So, norm of v on weighted inner 

product comes out to be under root 31. At the distance between u and v on this inner 

product, weighted inner product is 3 norms of 3 minus 1 comma 2. And, this comes out 

to be 3 u comma v is 3 into 3 plus 2 times minus 1 into minus 1. That is 1 plus 3 times u 

3, v 3, that is 3 times 2 comma 2. So, it is 4 and this comes out to be under root 23. 
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Now, we discus some properties of norms and distances. So, suppose u v and w are 

vectors in an inner product space and c is any scalar. Then, the following properties can 

be easily established. The first property is the inner product of u minus v and w is u 

comma w minus v comma w. The second property is previously, we have addition here. 

Now, we have subtraction here. The second is u inner product of u comma 0 is the same 

as inner product of 0 comma u. And this is always 0. The third is inner norm of c u is 

equal to the magnitude of the scalar c multiplied by norm of u. Then, norm of u is always 

greater than equal to 0. These are the properties, which can easily be derived. 
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And fifth is norm of u, if u is equal to 0, when u is equal to 0. Next, is norm of u plus v is 

less than equal to norm of u plus norm of v. And then we have d u v is equal d v u. That 

means, distance between u and v or distance between u and v, v and u. It is the same. 

And 8th property is distance between u and v is less than equal to distance between u and 

w plus distance between w and v. This is called Schwartz inequality. 
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Now, we discuss orthogonality of vectors. So, let us define it first, let V be an inner 

product space. The vectors u and v in V are orthogonal. If the inner product of u and v is 

0, so this is the definition for orthogonality of 2 vectors. Here, the order of vectors is not 

important, because if u comma v is equal to 0 than inner product of v comma u is also 0, 

due to symmetry. So, if u is orthogonal to v. Then, v is also orthogonal to u.  

Now, a subset S of V is orthogonal, if every pair of distinct vectors in S is orthogonal. 

Here, we have defined orthogonality between 2 vectors. Now, we are defining 

orthogonality of a set of vectors. So, a subset S of V is orthogonal, if every pair of 

distinct vectors in S is orthogonal. And then a vector v in V is a unit vector, if norm of 

this vector is one. That is, how we defined unit vector. 
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A subset S of V is orthogonal. If S is orthogonal and norm of v is equal to 1, for all 

vectors v in S. That means, if these two properties are satisfied for subset S. Then, this is 

called orthonormal. The first property is that S is orthogonal set and norm of each vector 

in S is 1. That is, how we define orthonormal set. The set S consisting of u 1, u 2, u n is 

said to be orthonormal. 

If u i, u j is equal to S i j or we call it delta i j. If it is 0, when i is not equal to j and it is 1 

for i is equal to j. So, this definition is actually means this. For example, if u 1 and u 2, i 

is equal to 1 and i j j is equal to 2. So, this is orthonormal. If these 2 vectors are 

orthogonal, that means u i, u 1 and u 2. This is equal to 0, when i is not equal to j. This 

should be true for all i and j, when they are not equal. 

But, if they are equal, the inner product of u i comma u i when i and j are equal. That is 

norm and this has to be 1, because it is an orthonormal vector. So, that is how, we define 

orthonormal set. And mathematically, we say that, inner product of u i comma u j is 

equal to 0, for i is not equal to j and one for i is equal to j. So, if this property is satisfied 

for all i and j for a set S. Then, we say that set S orthonormal. 

If u and v are orthogonal, then u divided by norm of u and v divided by norm of v. These 

vectors will be orthonormal, because orthogonality does not mean orthonormality. 

Because, normality wants that, there norm should be 1. Hence, this additional property is 

required. So, if u and v are orthogonal, then to make it orthonormal, you have to divide 



 

individual vectors by their norms. So, u and norm of u and v and norm of v will be 

orthonormal. So, this way we are actually getting the norm of the vectors as 1. 

If u and v are orthogonal, then c u and d v will also be orthogonal for scalar c and d. This 

can be easily proved, because if u and v is inner product of u and v is 0. Then, inner 

product of cu comma v is also 0 and inner product of c u comma d v will also be 0. So, 

this is what we have. 

(Refer Slide Time: 28:18) 

 

Now, as an example, I have given a set of 3 vectors 1, 0 minus 1, 0, 1, 0 and 1, 0, 1. We 

have to find, whether this is an orthogonal set of vectors or not. Now, to check this, we 

have to see, whether they are orthogonal or not, whether, this pair is orthogonal or not. 

So, let us consider 1, 0 minus 1 and 0, 1 comma 0. Let us form, it is inner product and 

one can see that, 1 comma 1 multiplied by 0, 0 multiplied by 1 minus 1 multiplied by 0. 

On the standard inner product, this is 0.  

If nothing is said, then we consider the standard inner product. So, we are considering 

standard inner product and this inner product is 0. Then, consider a second pair 0, 1, 0 

and 1, 0, 1. Again, this is this set this pair is orthogonal, because 0 comma 0 multiplied 

by 1 plus 1 multiplied by 0 and 0 multiplied by 1 all are 0. So, it is, this is also 

orthogonal. And there is third set 1, 0 minus 1 and 1, 0, 1. If this is also this pair is also 

set of orthogonal vectors. Then, you can say that this set is a set of orthogonal vector.  



 

So, let us check this 1 comma 1 is 1. This is 0 1 comma minus 1 is minus 1. So, the sum 

is 0. So, this also is an orthogonal pair and that means, the set S consist of orthogonal set 

of vector. Now, let us see, what are these vectors the first vector 0, 1, 0, 0, 1, 0 is a vector 

on y axis. Then, another vector 1, 0 minus 1, 1, 0 minus 1 is this vector, which is on y x 

plane. And this is on x z plane, x and z plane.  

The third vector is 1, 0, 1 this is also on x z plane. And so these 2 vectors, they are lying 

on x z plane. And this is third vector is y vector. So, x z plane is y axis is perpendicular 

to x z plane. So, these 3 vectors are orthogonal, then these 2 vectors whether they are 

perpendicular or not. So, let us check, whether they are perpendicular or not.  

So, we have to compute the inner product. It is 1, 0, 1, 1, 0, 1 is this 45 degree line with 

this. And this is again on the negative side. So, this is also 45. So, that means, this angle 

between these 2 vectors is 90 degree. So, that is, how these 3 vectors are orthogonal, this 

is a geometrical interpretation. But, these 3 vectors are orthogonal. But, they are not 

orthonormal. Although the norm of this vector is one, but the norm of this vector is not 1. 

Similarly, the norm of this vector is not 1. So, this set is not a set of orthonormal vectors. 

They are simply orthogonal vectors. 
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The set S of vectors is called orthonormal basis for the vector space, provided it satisfies 

two properties. One is, it forms a basis for the vector space V and the second is the set S 

orthonormal. Now, see, we are defining a vector space. We are defining a basis for a 



 

vector space. But, now we are interested in orthonormal basis for the vector space. So, to 

have an orthonormal basis for a vector space, first thing is that, it should form a basis for 

the vector space. And then it should have an additional property that the set is 

orthonormal. 

Now, this is example, we have to show that the standard basis e 1, e 2 and e 3 of R 3 is 

an orthonormal basis. You have all ready seen that e 1, e 2, e 3 forms a basis for the 

vector space. Now, we have to show that these 3 vectors in the basis. They are actually 

orthonormal. So, e 1 is 1, 0 comma 0, e 2 is 1, 0, 1 and e 3 is 0, 0, 1. 
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So, if you consider the product e i comma e j, this is equal to delta i j. You can check it 

for each pair e 2, e 1 or e 1, e 2 is equal to 1 comma multiplied by 0 plus 0 multiplied by 

one plus 0 multiplied by 0. That is 0. Similarly, e 3 comma e 1 or is the same as inner 

product of e 1 and e 3. This is also 0 and e 3 inner product of e 3 and e 2 is the same as 

inner product of e 2 and e 3. This also comes out to be 1. 

And further norm of e 1 is inner product e 1 comma e 1 is 1 comma 1, 1 multiplied by 

one that comes out to be 1. Similarly, a norm of e 2 is also one norm of e 3 is equal to 1. 

So, we have shown that, e 1, e 2, e 3 forms a basis. They are orthogonal pairs they form 

orthogonal pars. And then each vector is of magnitude or is of norm one. So, this basis is 

orthonormal basis. 
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Now, we have some more results on inner products. First result is, that norm of u plus v 

square is equal to norm of u square plus norm of v square. Now, to prove this, we 

consider u plus v square is u plus v comma u plus v. So, we apply the property of inner 

products, u plus v comma u plus u plus v comma v. And that means u plus v square is 

equal to, again we apply the same property, here u comma u plus v comma u. Here, again 

we apply the same property u comma v plus v comma v. 

And that means, this is nothing but norm of u square plus v comma u plus u comma v. 

And finally, plus v square and since u and v are orthogonal, this is being given to us. So, 

v comma u is 0 and u comma v is equal to 0 and that proves our result. That norm of u 

plus v square is equal to norm of u square plus norm of v square. So, this result is 

proved. 
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Now, we have an interesting result. It states that, if S consisting of n vectors as v 1, v 2, v 

n. And since, it is an orthogonal set of nonzero vectors. Then, v 1, v 2, v n are linearly 

independent. Now, this is an important result. Let us see, how we prove this. Suppose, 

we have dependent relationship between v 1, v 2, v n. That means, they are not 

independent, let us say, they are dependent vectors. 

Then, there exist constant c 1, c 2, c n not all 0. Such that, c 1, v 1 plus c 2, v 2 plus c k, v 

k is equal to 0, there must be some k not necessary. The all n, may be independent, but 

some k vectors maybe linearly dependent. So, c 1, v 1 plus c 2, v 2 plus c k, v k is equal 

to 0. So, we can say here, that it is, if we take the inner product of this with respect to v i. 

So, I am taking inner product here. 

So, on the right hand side is inner product v i comma 0, this is 0. So, that is not a 

problem. So, we will take v i comma c 1, v 1 plus c 2, v 2 plus c k, v k. So, this can be 

simplified as c 1 into v i comma v 1 plus c 2, v i comma v 2 plus c k, v i comma v k is 

equal to 0. Now, this is the property of inner products. That is why; we are taking c 1 out, 

so addition property and scalar multiplication property. Now, v i comma v 1, this is 0. If 

it is not 1, it is going to be 0, because they are orthogonal. Similarly, this is going to be 0. 

So, all these will be going to 0. 
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So, if i is not equal to j, inner product of v i and v j is 0. Due to orthogonality, that 

means, we have only c i multiplied by v i comma v i is 0. For all i is equal to 1, 2 to n 

and whatever i, you consider this is going to happen provided. And, we know that, v i 

comma v i is not 0. So, what we can say is, c i, v i is this is v i comma v i is v i square, 

norm of v i square and this is not 0. So, that means, c i is equal to 0 and this is the 

contradiction. 

We have said that, there are nonzero c i is that is why a dependent relationship is formed. 

But, we have arrived with the contradiction. That simply means that, the vectors are 

nearly independent. So, that proves the result. So, S is the set of independent vectors. So, 

if the set if set S consisting of orthogonal vectors. Then, this set is actually the set of 

independent vectors. So, this is an important result. 
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Now, another result, suppose S is equal to v 1, v 2, v n is an orthogonal basis for inner 

product space V. Then, any vector v belonging to V can be expressed as this. So, let us 

try to prove this, there is one more result in this. Further, if S is an orthogonal set. Then, 

orthonormal set, then all this will be 0, all this will be 1. So, it is nothing but v is equal to 

v comma u 1 into v 1 plus inner product of v comma u 2 multiplied by v 2 plus inner 

product of v comma un multiplied by v n. So, let us try to prove this. 

(Refer Slide Time: 39:32) 

 



 

So, let us say v belongs to V. So, v is a vector belonging to v and v 1, v 2, v 3, v n. They 

form a basis. So, v can be expressed as a linear combination of this vector. So, v is equal 

to c 1, v 1 plus c 2, v 2 plus c 3, v 3 plus c n, v n. And that means, if we take inner 

product of this with respect to v i on both the sides. Then, v i comma v inner product of v 

i comma v is equal to c 1, v i comma v 1. The first term plus c 2 times v i comma v 2, the 

second term and the last term will be c n and inner product of v i comma v n. 

Now, since S is an orthogonal basis. So, v i and v j is equal to 0 and v i comma v is equal 

to c i multiplied by inner product of v i comma v i rest of the terms will be not 

contributing anything. Only, the ith term in which, we are taking inner product of v i 

with v i only, that will be nonzero. That we multiplied by c i, but rest the terms will be 0. 

So, on the left hand side, we have v i comma v and on the right hand side, we have only 

single term c i multiplied by v i comma v i. But, this is nothing but norm of v i. 

And that means, c i is equal to v i inner product of v i comma v divided by v i square. 

And this can be done for all i‘s. So, this we have done for v i, but this can be done for v 

1, v 2, v n. So, this we can find all ci’s and that means, our first result is proved. And of 

course, if S is orthonormal basis, then norm of v i square is equal to 1. For all i’s and that 

is why; we have the second result. So, this is another interesting result. Now, why this is 

interesting, because this result helps us in expressing the vector in terms of orthonormal 

basis. 
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Now, we have another definition. Let V be a real inner product space. That means, we 

have a vector space and an inner product is defined on it. Let W be a subspace of V, then 

a vector u in v is orthogonal to W. If u is orthogonal to all vectors in W, see, we were 

talking about orthogonality between pair of vectors. Now, we are talking orthogonality 

of a vector with respect to a set of vectors. So, a vector u and v is orthogonal to W.  

If the vector u is orthogonal to all vectors in W, that means inner product of w and u is 0, 

for every w in W. So, for this is true for all w’s in this set W, if this is true, then we say 

the vector u is orthogonal to the set W. Then, we talk about orthogonal compliment of W 

is a set of all vectors in V, which are orthogonal to all the vectors in W. We will come 

back to this again and we say that orthogonal compliment is denoted by W 

perpendicular. We will come back to this again. 
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Now, let W be a subspace of inner product space V. Then, W perpendicular is a subspace 

of V and W intersection of W perpendicular is 0. This is really an interesting result. That 

W intersection W perpendicular is 0. Now, to prove these results, let us say w 1 and w 2 

belongs to W perpendicular and w belongs to W. Then, w 1 comma w is 0 and w 2 

comma w is equal to 0, because this belongs to W perpendicular. 

So, W perpendicular is a set of all vectors, which are perpendicular to the vectors of W. 

So, that is the idea of W perpendicular. So, w 1 plus w 2 comma w, this will also be 0. 

And that means, this also belongs to W perpendicular. Further, the inner perpendicular w 



 

1 comma w is equal to 0. That means, c times w 1 comma w, this inner product will also 

be 0. 

So, we have sum of 2 vectors belongs to W perpendicular. And sum with a scalar 

product will also belong to W perpendicular. And that means, this is actually the 

definition of subspace. So, we say W perpendicular is a subspace of V. 
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To prove this second property, let u belongs to both this W intersection W perpendicular. 

That means, u belongs to as W as u belongs to W perpendicular. And since, u belongs to 

W as well as W perpendicular. So, vectors of W and W perpendicular are orthogonal. So, 

we take a product; take a vector from W perpendicular. And then there inner product will 

be 0. So, we take u from W and we take u from W perpendicular. So, inner product of u 

comma u is 0 and that means, when this happens, when u is equal to 0. So, if u belongs 

to W intersection W perpendicular. Then, that vector has to be 0. So, that simply means 

that, W intersection W perpendicular is nothing but the 0 vector. Now, we discuss Gram 

Schmidt process for orthonormalization. 
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Let us say a vector space V is given to us. It is a finite dimension inner product space and 

we have been given a basis S consisting of n vectors u 1, u 2, u n. Then, with the help of 

this process, we can obtain another basis v 1, v 2, v n for the inner product space V, 

which is orthogonal. And then from that orthogonal basis, we can divide each vector 

with it is norm and we can have an orthonormal basis. So, we will first describe this all 

algorithm. 
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So, the step 1 is, we consider any vector u 1 from the set S. And let us call this vector as 

V 1. In the second step, we consider another vector u 2 from the set S and consider span 

of these 2 vectors. And let us call that span as w 1. Now, we consider a vector v 2 in the 

span w 1v, such that, v 2 is orthogonal to v 1. So, if we can get this, then v 2 is a linear 

combination of c 1, u 1 plus c 2, u 2, u 1 is nothing but v 1. 

So, we have this v 2 is equal to c 1, v 1 plus c 2, u 2. Then, we take the inner product 

with v 1 and we try to check that, v 2 v 1 comes out to be 0. So, this equation is solved 

by equating it to 0. And this is what the geometrical interpretation is, we have u 1. We 

have u 2 vector, they are not necessarily orthogonal. But, from this linear combination of 

u 1 and u 2, we can find out a vector v 2 which is orthogonal to u 1. So, this equation 

helps us in obtaining v 2. 

So, what we do is, we solve this c 1 is equal to minus c 2 inner product of u 2, v 1 

divided by v 1 square. And if we take c 2 is equal to 1. Then, this vector v 2 can be 

obtained as u 2, u 2 minus inner product u 2, v 1 divided by v 1 square into v 1. So, we 

have obtained vector v 2, which is perpendicular to v 1. So, for given 2 vectors, we have 

orthogonal 2 vectors. 
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Now, therefore, the nonzero orthogonal vectors v 1 and v 2 are linearly independent. 

This we have just now proved. Now, the span of v 1, v 2 is a subspace of W having 

dimension 2, because these vectors are independent. Further, span of u 1, u 2 is a same as 



 

span of v 1, v 2. Therefore, the new basis v 1, v 2 will span the same subspace as 

spanned by v 1, and v 2. So, we have got 2 vectors. Now, we try to extend this to 3 

vectors for this similar procedure is applied. 

We consider span of 3 vectors u 1, u 2, u 3 from the given set S and we consider v 3 in 

this. And we apply the same philosophy, what we have done in earlier step. So, v 3 

belongs to span of v 1, v 2, u 3. And we choose v 3 in such a manner, that it is 

perpendicular to v 1 and v 2. So, we have two equations. We have this equation v 3 is 

equal to d 1, v 1 plus d 2, v 2 plus d 3, u 3 and we apply to it, this concept. 

And, this will give us u 3 as v 3 minus v 3, u 1 inner product of this divided by u 1 

square multiplied by u 1 minus inner product of v 3, u 2 divided by u 2 square into u 2. 

So, one can obtain this equation with the help of this equation. So, we got third vector. 
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Similarly, v 1, v 2, v 3 will be linearly independent orthogonal vectors. So, that they 

form in orthogonal basis for span of u 1, u 2, u 3. Similarly, we can apply more number 

of steps till we get all vectors v n. And to convert this basis to orthonormal basis, each 

vector u i will be divided by it is norm. 
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So, this way, we will get the orthonormal basis and the formula is first from u 1. We will 

get v 1, u 2. After getting v 1, we will apply this formula to get v 2. This left hand side 

involves u 2 and v 1. Then, we will have v 3, v 3 is obtained in terms of v 1, v 2, u 1, u 2 

and u 3. 

So, this is known on the left hand side. So, from here we get v 3 and we can go on 

applying this. This is general expression for v n. And then we can orthonormalize it and 

then we illustrate this procedure with an example. 
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So, we consider R 3 instead of R n consisting of this 3 vectors 2, 1, 0, 1, 0, 1 and minus 

1, 1 as a basis for R 3. We have to find an orthonormal basis using Gram Schmidt 

process. So, what we have done is, we first consider u 1 as 2, 1 and 0. So, u 1 is 2, 1 and 

0, so same as v 1. The seconds step gives us this formula. So, we consider u 2 as this 

vector 1, 0, 1. We can compute, we can substitute the values u 2 is 1, 0, 1, u 2 comma v 2 

is 2 and v 1 square comes out to be 5. We substitute the values here and what we get is v 

2. 

(Refer Slide Time: 51:20) 

 

And v 2 is obtained as this 1, 0, 1 minus 2 by 5, 2, 1, 0 is this vector. So, that is how, we 

get v 2 and the third step is this formula. We have all ready obtained. We substitute the 

values u 3 as minus 1, 1. The third vector from the given set, we compute u 3 comma v 1 

as minus v 1. We compute u 3 comma v 2, which comes out to be 2 by 5 and then v 2 

square is computed as 6 by 5. 
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These values are substituted here and what we get is the vector v 3, which is finally 

obtained as through series of expressions. We finally arrive at v 3 as minus 2 by 3, 4 by 3 

and 2 by 3. So, all the 3 vectors are obtained. 
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Now, 2, 1, 0, 1 by 5, 1 minus 2, 5 and 1 by 3 minus 2, 4, 2 form an orthogonal basis. And 

if you have to obtain the orthonormal basis, then we simply divide these vectors by their 

norm. So, this is 1 minus 2, 5 is divided by under root 30. It is norm minus 2, 4 comma 2 



 

is divided by it is norm. So, this is the orthonormal basis, one can check that this is 

orthogonal set and this is orthonormal set. 
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So, that is how, we apply Gram Schmidt process to arrive at the orthonormal basis from 

the given basis. So, today viewer at the end, I will summarize, what I have done today, I 

have given the definition for inner product. I have defined inner product spaces, the norm 

distances, we have taken examples to illustrate this and we have taken. So, we have 

discussed some properties of inner products. We have discussed orthogonal vectors 

orthonormal vectors. At the end, we have discussed Gram Schmidt process for 

orthonormalization, which I have illustrated with the help of example. 

Thank you. 


