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Welcome, viewers. We are starting series of lectures on linear algebra. This is the first 

lecture in this series. In this, we will be discussing vector spaces. Viewers, we are 

performing operations of additions and multiplication on numbers, but they are 

performed on vectors as well. We have seen how addition and scalar multiplications 

performed on matrices they can be performed on polynomials also. Similarly, the linear 

combination of objects appears in many different contexts, like we can have linear 

combination of vectors solution of differential equations. Now A branch of mathematics 

dealing with the common properties of sets and liner combination of its elements is linear 

algebra. We start with the definition of vector spaces. 
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Now vectors vector spaces - sometimes we call it linear spaces - consist of the following: 

the first is the set of real numbers -we call them scalars, a n 1 mpty set V of objects or 
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vectors and 2 operations defined on them - plus and star; they are defined as plus is 

defined on set of vectors, so if we have a pair of alpha and beta in V, then another vector 

alpha plus beta is also in V. We say alpha beta is the sum of 2 vectors alpha and beta and 

if this is also in V, the we say vector addition is satisfying the closure property or we say 

vector addition is closed in V. 
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Now this vector addition must satisfy following axioms. The first axiom is that addition 

is commutative; that means, if we add beta in alpha, that is alpha plus beta, or we add 

alpha and beta, that is beta plus alpha, it is same for all alpha beta in V; that is alpha plus 

beta is equal to beta plus alpha for all alpha beta in V; if this property satisfies then we 

say addition is commutative. The second axiom is that addition is associative; by this, we 

mean to say that if there are 3 vectors - alpha, beta and gamma - then alpha plus beta plus 

gamma is equal to alpha plus beta added and then we add gamma into it; so we will have 

alpha plus beta plus gamma is equal to alpha plus beta and then we add gamma to it; that 

means it doesn’t make difference whether we add beta plus gamma first and then addition 

alpha into it, or we add alpha plus beta first and then add gamma. In fact this means these 

brackets are meaningless; we can we we can ignore them. So if this property of addition 

is satisfied, then we say addition is associative. The third axiom is that there exists an 
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additive identity in the set V. By this, I mean to say that there exists a member -  call it 0 - 

in V such that alpha plus V is equal to alpha; that means whenever we add 0, whenever 

we add anything on 0, the that thing remains the same; that is, alpha plus 0 is equal to 

alpha for all alpha belonging to V. Such a vector is called additive identity in V. Then the 

next axiom is that additive inverse exists for any number - any vector alpha - in V. By 

this, I mean to say that for given alpha there exists another vector - I call it minus alpha - 

so that alpha plus minus alpha is equal to additive identity null. So alpha plus minus 

alpha is equal to 0 or we say minus alpha is the additive inverse of alpha. 
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Similarly, scalar multiplication is also is has to satisfy certain properties. First thing is the 

closure property; by this, I mean to say that if there is a scalar c in set of real numbers R 

and a vector alpha in V then the vector c star alpha is called the scalar product of c and 

alpha; and if c star is a vector and it is also in V, then we say it satisfies the closure 

property. So scalar multiplication satisfies the closure property means that c star alpha is 

also in V for any given scalar c. It has to satisfy other axioms. Call it A 5 - it means c star 

alpha plus beta is equal to c star alpha plus c star beta for given alpha beta in V and c in 

R. By this, I mean to say is that you add alpha plus beta - 2 vectors - and then multiply it 

by the scalar c. This amounts to be the same thing as if we have multiplied alpha with c 



 4 

and beta with c. So this is a scalar multiplication; we add the 2 vectors and what we have 

is another vector which is the same as c star alpha plus beta. Now this property is called 

that multiplication by scalar is distributive; so this scalar multiplication and this is 

addition. So this addition this scalar multiplication distributes the addition of vectors; that 

is why it is a distributive property of scalar multiplication. 
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Next is c 1 plus c 2 - 2 scalars; then they are added and then multiplied by a vector alpha; 

then this amounts to c 1 star alpha plus c 2 star alpha for all alpha in V and c 1 c 2 in R. 

We say that multiplication by vectors is distributive with respect to scalar addition. So 

this alpha when multiplied by these 2 - addition of 2 scalars - then it is distributed as c 1 

star alpha plus c 2 star alpha. The next is the associative property. Here we will have c 1 

dot c 2, that is, multiplication of 2 scalars multiplied by a vector alpha is equal to c 1 star 

c 2 star alpha.  Now here, you may notice that this dot simply means multiplication of 2 

scalars - simple multiplication of 2 scalars. So When the 2 scalars are multiplied, we will 

be getting another scalar. Now when this scalar is multiplied by vector alpha, then what 

we have is c 1 star c 2 star alpha; that means, this is equal to c 2 is multiplied by c 2 

scalar is multiplied by vector alpha, this becomes a vector and then this vector is 

multiplied by the scalar c 1; then we will have c 1 star c 2 star alpha. So this is such sort 
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of associative property; so multiplication by scalars is associative. Last property is 

multiplicative identity: that if there exists 1 in R such that 1 star alpha is equal to alpha 

for all alpha in V; so there there has to be a scalar 1 in R, which when multiplied by 

alpha, remain alpha remains unchanged. So this property has to be there and when all 

these properties are satisfied from a 1 to a 8, then we say that we have a vector space. 
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Now we say that unless the vector addition and scalar multiplication is defined, we can’t 

say that whether a given set V forms a vector space or not. That means, we define a 

vector space; we have to have a set V of vectors and 2 operations: the vector addition and 

scalar multiplication. Now with this, if we include the closure property of vector addition 

and scalar multiplication also, then this triplet V plus and star is a vector space, provided 

all the ten properties are satisfied. These ten properties are 2 closure properties - 1  with 

respect to addition, another with respect to scalar multiplication - and eight axioms which 

I have just now discuss from a 1 to a 8. 

 

 

 

 



 6 

(Refer Slide Time: 9:56) 

 

 

Now, let me explain this with the help of an example. So Let us consider the set of 

vectors in 2 dimensional plane R 2. So V is a set of vectors where alpha is a vector in R 

2, so it has to be in order pair x 1 comma x 2 where x 1 and x 2 are real numbers. So If 

we consider this set of vectors and we define the addition of 2 vectors, alpha x 1 comma 

y 1 and beta x 2 comma y 2 as another vector gamma which is x 1  plus x 2 and y 1  plus 

y two, - so the if we define this way - then vector addition is closed and we also define 

the scalar multiplication of vectors x 1  y 1  with scalar c as c star x 1 comma x 2 as c x 1 

comma c x 2. Both the components of the vector are multiplied by c. Now this is a real 

number ,this is a real number and so again a pair. So this also belongs to V and that 

means scalar multiplication, if we define this particular way, is also closed or closure 

property is satisfied by scalar multiplication. 
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Now we have to check whether all the other axioms A 1 to A 8 are satisfied or not. So le 

To start with, we first consider A 1 which means addition is commutative; so to check 

this, we consider 2 vectors first:  x 1 comma y 1 and the second is x 2 comma y 2. By 

definition, the way we have defined vector addition it is x 1 plus x 2 comma y 1 plus y 2. 

But x 1, x 2, y 1  and y 2 - being real numbers - their sum is also real number. So x 1  

plus x 2 and y 1 plus y 2 can be written as x 2 plus x 1 and y 2 plus y 1. Now here, one  

may notice that this plus here and this plus here - that means, plus on the left hand side 

and plus on the right hand side - have different meanings. Here the plus means we are 

adding 2 vectors; so it is between 2 vectors; so this plus means vector addition. While this  

plus means simply we are adding 2 numbers; so this plus refers to addition of 2 real 

numbers; so this is a real number, this is a real number, that is why we can write it as x 2 

plus x 1and y 2 plus y 1 and by definition, this is equal to x 2 comma y 2 plus x 1 comma 

y 1 and that simply means x 1 y 1 plus x 2 y 2 is the same as x 2 y 2 plus x 1 y 1. That 

means order of addition of vectors doesn’t make much difference; whether we add x 2 on 

in x 1, the whether we make we add this vector in this vector or this in this, it is 1 in the 

same. So we say that addition is commutative. 
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So the next property is associative property. So If we consider 3 vectors now – alpha, 

beta, gamma as x 1  y  1,  x 2 y 2 and x 3 y 3 respectively - then this sum is given by this 

pair and this can be simplified further; this second bracket can be simplified to x 2 plus x 

3 and y 2 plus y 3, and then you can add this vector here. So it is x 1 plus x 2 plus x 3 

comma y 1  plus y 2 plus y 3 and since x 1 x 2 x 3 are simply numbers, so they can be 

associative; so you can change the order of bracket. so That simply means x 1 plus x 2 

and then add x 3; in the same way y 1 plus y 2 and then add y 3, and further 

simplification will give us x 1 plus y 1 plus x 2 plus y 2 plus x 3 y 3; so, order is not 

important and what we have finally is alpha plus beta plus gamma. So, associative 

property is satisfied by vector addition. 
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 So, first two properties being satisfied, let us check the third property, that is additive 

identity. So In this set of vectors, we say theta is equal to 0 comma 0, where both the 

components are 0; they belong to V, because they are real numbers; so V is additive 

identity and it belongs to V. Let us check there is additive identity or not for this. 

Consider any vector alpha. Add theta into it and what we have is x 1 comma x 2 plus 0 

comma 0 and it amouns to be the same vector as alpha. So we can say that there exists 

additive identity theta. The next property is additive inverse. So For given vectors alpha x 

1 and x 2, there exist minus x 1and minus x 2 in V, such that x 1 plus x 2 plus minus x 1 

comma minus x 2 is equal to 0 comma 0 and this is nothing but theta. So x 1 plus x 2 For 

given x 1 x 2, we have minus x 1 minus x 2 in V they are it is in V because x 1 and x 2 

are numbers and if x 1 x 2 belongs to R, minus x 1 minus x 2 also belongs to R. So 

inverse of x 1 x 2 is minus x 1 comma minus x 2. So, for given vector alpha, there exists 

its inverse. So In this way, additive inverse exists in V for all alpha given in V. 
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Now comes this scalar multiplication. We first check the distributive property; so c star 

alpha plus beta is equal to c star x 1 comma y 1 - that is, alpha - plus x 2 comma y 2. We 

can add the two: it is x 1 plus x 2 comma y 1 plus y 2 multiplied by c and then by the 

definition of scalar multiplication, c can be taken inside; so it is c x 1 plus x 2 comma c 

by 1 plus y 2. Then you can simplify this because c is a scalar and x 1, x 2 are real 

numbers; so we can write it as cx 1 plus cx 2 comma cy 1 plus cy 2. Then this is nothing 

but cx 1 comma cy 2 plus cx 2 comma cy 2 and by definition of scalar multiplication, we 

can say it is c star x 1 y 1 plus c star x 2 y 2. Finally, it is nothing but c star alpha plus c 

star beta and this is we have started with c star alpha plus beta and finally we arrived that 

this result, and this proves that scalar multiplication is distributive over vector addition. 

so This is the next axiom. 
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Then A 6 means scalar scalar addition star the vector xy. So it is c 1 plus c 2 x comma c 1 

plus c 2 y, by the definition of scalar multiplication, and then of course these are simply 

numbers and we are doing again and again; so they can be this they can be simply 

multiplied and then we finally have c 1 star x comma y plus c 2 star x comma y.  So the 

property A 6 is also verified for this plus. Then Next is A 7, which is the associative 

property; so it is c 1 c 2 multiplied by alpha; so we have c 1 c 2 star - alpha is x comma y 

; so we say c 1 dot c 2 multiplied by x comma c 1 c 2 multiplied by y - so this is a vector. 

And then we again apply the the associative property for real numbers and it is c 1 dot c 2 

x; so we can change the order here, the bracket principle changes. Same thing will be d 1  

here and then c 1 can be taken outside and what we have is c 2 x comma c 2 y. This is 

nothing but c 1 star c 2 star x comma y and finally, what we have is c 1 star c 2 star alpha. 

So we have proved that c 1 dot c 2 star alpha is the same as c 1 star c 2 star alpha. 
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So The last property is multiplicative identity. So We have to prove that there exist scalar 

1 in R, which when operated upon the vector alpha, it remains the same. So To check 

this, we say 1 is that multiplicative identity; so 1 star alpha is equal to 1 star x comma y - 

we apply the multiplicative definition of multiplicate ah definition of scalar 

multiplication - it is 1 dot x comma 1 dot y which is nothing but x comma y; So this is the 

same as alpha. So Finally what we have is 1 star alpha is equal to alpha; so this 1 is such 

a multiplicative identity. So there exists some multiplicative identity 1 in R. So All the 

properties are satisfied; so one can say that R 2, that is a set of vectors in R 2, plus the 

vector addition, star - the scalar multiplication - is a vector space. So to check that a given 

set and the 2 operations defined on them on this particular set is a vector space, we have 

proved all the properties and in this particular case, we have shown that all these 

properties are satisfied; so R 2 plus star is a vector space. Now this is one simple 

example. I will extend this simple example to Rn; that means, we have earlier taken 2 

dimensions vector 2 dimensional vector space. Now we are taking n dimensional vector. 
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So we will have V. The set V is consisting of pair ah of n real numbers - so it is x 1 x 2 

xn . All these belong; to R then this is a vector space in Rn with respect to vector 

addition. So how do you define vector addition in this? This is a vector addition. We will 

have x 1 x 2 xn plus y 1 y 2 yn is equal to x 1 plus y 1, x 2 added into the second 

component, x 3 added into the third component, xn added into last component yn. So that 

is if that is how we define vector addition. Then how do we define scalar multiplication 

on this set? So If we have a scalar c when c is multiplied with this vector, then every 

component is scale by this c. So it is c star x 1 x 2 xn is cx 1 comma cx 2 comma cxn. So 

If we define scalar addition in this way and scalar multiplication in this way then one can 

very easily check that this is also a vector in V; this is also a vector in V. So addition is 

closed and scalar multiplication is closed. One can very easily check all other properties 

A 1 to A 8 for this set and one can prove that this is also a vector space. So closure - we 

have checked. Commutative property - we have to see; this will always be satisfied 

because these numbers x 1 x 2 xn etc these are real numbers. So and as we have proved in 

earlier example, this will also be proved in the same very manner. So closure property, 

commutative property, associative property,  all the distributive properties are satisfied; 

only thing is you have to show that there exists a 0 vector in Rn; so we say that 0 vector 

is nothing but all the components are 0. So If this is the 0 vector, then one can also find 
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additive inverse for all x 1 x 2 xn. So inverse also exists. Similarly scalar one is also 

there, which when multiplied by the given vector x 1 x 2 xn will remain unchanged; so 

this is also a vector space. So V-  define in this manner; addition, in this particular 

manner; scalar multiplication in this manner; this also defines a vector space. 
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The third definition is third example is the set of m by n matrices; they also form a vector 

space over matrix addition and scalar multiplication of matrices. Now to prove this, one 

can say that addition of matrices is closed because if we are given two m by n matrices, 

then the result is also the sum of 2 m by n matrix is also an m by n matrix; so it is closed. 

Similarly when you multiply a scalar c to a matrix, which is for m by n, the result is also 

an m by n matrix; so this is also closed. So the two operations are closed in the set of 

matrices. Then comes other properties; like but these have already been established - that 

matrix addition is commutative, matrix addition is associative, one can say that theta or 

the null matrix of order m by n is the negative identity; now the the next is the additive 

inverse. So for a given m by n matrix Amn, the additive inverse is minus Amn; this 

always belongs to the given set of m by n matrices. So this is also defined. 
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The next is A 5, that is scalar multiplication, distributed over vector addition. So we 

consider ij th element of m by n matrix - a - and b ij is the ij th element of m by n matrix 

b. So When c is multiplied with this, let us see what will happen. c multiplied by aij plus 

b ij is - when we add 2 matrices, then they are being done element wise; so ij th element 

of a and ij th element of b matrix will be added together giving us aij plus b ij of the m by 

n matrix. So This is scalar multiplied by c; so this simply means c times aij plus c times b 

ij of m by n matrix and then one can split the two - it is c aij m by n plus c bij m by n and 

that simply means cA plus cB. So what we have is c star A plus plus B is equal to cA plus 

cB; so this property is also valid for m by n matrices. 
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Now comes the next distributive property. So We have 2 scalars - c 1 and c 2; they were 

multiplied by an m by n matrix. Let us say aij is a typical element of A. So c 1 plus c 2 

multiplied by aij of m by n order matrix this comes out to be c 1 plus c 2 multiplied by 

aij; so it is multiplied with each and every element of the matrix. So it is c1alj plus c 2 aij 

because these are simply numbers. So they are distributed and then you can again collect 

the elements and  we will have c 1 aij m by n plus c 2 aij m by n and this simply means c 

1 A plus c 2 A. So what we have is c 1 plus c 2 A is equal to c 1 A plus c 2 A. That 

means A 6 also holds for this set. 

 

 

 

 

 

 

 

 

 



 17 

 

(Refer Slide Time: 26:29) 

 

 

The next is next property is distributive property. So Let us see: c 1 c 2 two scalars 

multiplied by A. So the c 1 c 2 multiplied by typical element of the matrix - I am not 

writing m by n here again and again; so but this simply means the aij th element of the m 

by n matrix. So It is c 1 c 2 aij; it is multiplied with each and every element of the matrix 

and then this product; this is simply a number, so they can be distributed. You can put the 

ba you can interchange the brackets and finally what we have is c 1 c 2 into A. So This 

property also holds for scalars and matrices of order m by n. Next and the last is the 

existence of identity; so 1 belongs to set of real numbers, so 1 is a scalar which when 

multiplied by an m by n matrix A, will will not affect the matrix and what we have finally 

is A. So 1 multiplied by each and every element of the m by n th order matrix will not 

change any element here. So what we have is simply A. So All the properties are satisfied 

and one can say that and set of all m by n matrices form a vector space. 
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Now ah this ah These are some of the examples which we are the the simple examples we 

are aware of them with . Let us take one example which is slightly different from what 

we had so far. So now we define of vector V consisting of all real numbers belonging to 

R and here, I am defining the addition of 2 vectors in a different manner. So I am not 

using plus sign here, because plus may be little bit confusing here because here i mean to 

say the addition ah by addition I mean to say actually the product of 2 vectors alpha and 

beta - alpha being defined as a real number. So alpha plus beta is equal to alpha beta 

product of alpha and beta and c star alpha - by this, I mean to say alpha raised to  power 

the scalar c. So alpha is a real number and c star alpha means alpha raised to power c. 

Now my claim is then V plus, that the operation of addition which I have defined in this 

particular manner and scalar multiplication, if I define in this particular manner, then it is 

also a vector space. Now To prove this, I have to first check that this operation is closed 

or not. So for this, I consider 2 vectors - alpha and beta; they belong to V, they belong to 

V. But what is V? V is actually a subset of real numbers. The way I have defined this -V 

is a subset of R and alpha beta belongs to V. Now When alpha beta belongs to V, then 

this product means alpha beta - that also belongs to V - because multiplication of 2 real 

numbers is also a real number; so this is also closed. Star is also closed as alpha raised to 
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power c - alpha is real number raised to power, a real number c - also belongs to V. So 

plus is closed as well as star is closed. 
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Next is the commutative property. So alpha plus beta is equal to alpha beta which is equal 

to beta alpha because these are numbers; they can be commutative and this is nothing but 

beta plus alpha. The next property is associative. so We will say alpha plus beta plus 

gamma is equal to alpha beta gamma is equal to alpha beta gamma; these are our 

numbers, so these can they can be associative and they can be written in this form. So this 

becomes associative property.  So Next is additive identity; it is 1. So alpha plus 1 is 

equal to alpha multiplied by 1 because the way I have define this operation - it is the 

product of the 2. So this alpha into 1 - real number multiplied by 1- is the same real 

number alpha; so this is additive identity. 
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Additive inverse in this case: if I have alpha belonging to V, then there exists 1 by alpha 

in V such that when they are multiplied together, what I have is additive identity. In this 

case, additive identity is 1. So alpha multiplied by 1 by alpha is equal to 1. So we can say 

additive inverse of alpha is nothing but 1 by alpha. So that is how we define additive 

inverse. 

 

Next thing is the distributive property. Now To check the distributive property, we will 

have c star alpha plus beta is equal to - this operation is alpha beta - c star; this means 

alpha beta raised to power c and this these are simply numbers. So I can write down this 

number as alpha raised to power c beta raised to power c or we can say this is the 

product; then I can say alpha raised to power c added - this multi ah operation - beta c. So 

this is the product of the 2 and alpha is nothing but c star alpha plus c star beta. So c star 

alpha plus beta is nothing but c star alpha plus c star beta. So we have proved the 

distributive property. 
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alpha c 2 into c 1 can be written as alpha c 2 c 1 and this simply means that c 1 c 2 star 

alpha is the same as c 1 star c 2 star alpha. So that proves the A 6  -the associative 

property. Finally the A seven is c 1 plus c 2 star alpha is equal to alpha times alpha raised 

to power c 1 plus c 2 - this is the scalar - so it is c 1 plus c 2 and this can be written as 

alpha c 1 multiplied by alpha c 2 - this is the property of real numbers. So we can say 

alpha c 1 plus alpha c 2; so we can this is the product of 2 numbers alpha c 1 into alpha c 

2; so we can say alpha c 1 plus alpha c 2.  So this is equal to c 1 star alpha; this is nothing 

but c 1 star alpha and this is nothing but c c 2 star alpha and that proves the result that c 1 

plus c 2 star alpha is equal to c 1 star alpha plus c 2 star alpha and with this we come to 

the last property. That There exists 1 belonging to V such that - 1 belonging to the set of 

real numbers - such that 1 multiplied by alpha is equal to alpha times 1 or it is alpha. So 

there exists a scalar 1 such that 1 alpha is equal to alpha 1 is equal to alpha. Thus with the 

given operations, V is a vector space. So we have defined operations in slightly different 

manner but still we could prove that this given set V is a vector space with respect to 

defined operations. Now so far we have taken examples which are actually vector spaces, 

but in this example we are defining a set V of all vectors alpha such that alpha belongs to 

R and alpha is a positive number. Then we say that it is not a vector space with respect to 

the operations which we have just defined. 
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alpha plus beta is equal to alpha plus beta and c star alpha is equal to c into alpha. Now, 

proof is to prove this what we have to do is we have to show that at least 1 of the axioms 

fails in this case. So we have to check all the axioms and if there exists an axiom which is 

not satisfied then we can say that this set is not a vector space. So we start with addition; 

so addition is closed because if the alpha belongs to R then alpha plus beta will also 

belongs to R. alpha is a positive number, beta is a positive number; add the two. It is a 

positive number; so it is closed. It is commutative because alpha is a real number; so 

alpha plus beta is also a real number; so it is commutative. So really to prove that it is an 

associative this as a addition is associative - in this case that is also satisfied; but when it 

comes to scalar multiplication: so if we take r  -a scalar which is negative - then r alpha is 

also negative.  So If alpha is a vector, r is a negative scalar; then r into alpha by this 

definition is a negative number and this negative number because of this property will not 

belong to V; so we can say that this multiplication is not closed. So When this one 

property fails here, so it is not a vector space. So we can say the scalar multiplication is 

not closed. So This will not form a vector space. 
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In fact, if you can in fact the proof is done. But still we can say that theta is equal to 0 is 

the additive identity - absolutely no problem; but minus alpha is the additive inverse of 

alpha - that’s true - but minus alpha will not belong to V. So for given alpha, additive 

inverse will not exist. So This is another property which fails in this case or we say that in 

this particular example V is not a vector space.You can check other properties but the 

solution is complete because we have proved it is not a vector space. Then another 

example: 
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We have a set V consisting of R 3 - vectors in R 3: x y and z is equal to 0. x and y 

belongs to R with usual vector addition in R 3 and scalar multiplication is a vector space. 

So this set with usual vector addition and scalar multiplication is a vector space. Now we 

have proved this. One can check that addition and scalar multiplication - they are closed. 

Adition is commutative and associative; this one can be very easily proved. I leave this in 

exercise for the viewers. Then we can say 0 0 is additive identity for the set V; further 

minus 6 minus y 0 is the additive inverse of xy 0 for any vector belonging to to V in this 

particular form. One can very easily check that when we add the two, it is the additive 

identity is 0. Dstributive property is also satisfied. 
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Then we can talk about the scalar 1 such that 1 into alpha is equal to alpha and all these 

properties proved that V is a vector space with specified operations. But if we slightly 

modify this set V as xy comma c, where c belongs to R but - it is not 0 - c is not 0, then it 

is not a vector space with usual operations. So slightly you make a change in this and it 

will not be a vector space like the additive inverse 0 comma 0 comma 0 comma does not 

exist in V. So this is one property which says that V is not a vector space. This does not 

belong to is V because if it has to belong to V, then this must be c and c is not 0; so c is 

not a 0 so 0 0 0 cannot belong to V. So this is Because of this reason, we can say that x 

by c is not a vector space with usual operations. 
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Another example which is not a vector space: now we take an example where we have x 

y - if they belong to R. So this vector x y belongs to R; so it is R 2 be the usual vector 

addition plus and scalar multiplication defined as c star xy is equal to cx comma y. Now 

the now we are defining the scalar multiplication in a slightly different manner. See, 

earlier we took c star x comma y as cx comma cy. Now I have changed the meaning of 

scalar multiplication here. It is c star x comma y is simply cx comma y and that means 

then V plus star is not a vector space. One can prove it very easily. You can check c 1 

plus c 2 star x comma y is equal to c plus c 2 x comma y. So this is only first component 

is being multiplied by this; so it becomes c 1 x plus c 2 xy and now we can see c 1 x y 

plus c 2 x y; if I take the right hand side for this I will have c 1 x comma y plus c 2 x plus 

y and that simply means  - the vector addition means c - 1 x plus c 2 x plus y plus y that x 

2 y. That means this is not equal to this; so it is not distributive. So With this scalar 

multiplication, the same set which we have taken earlier will not form a vector space. So 

it is important how the way you are define the 2 operations. Its not It depends upon the 

set V; it also depends upon the operations which you define on them. So with this 

operation the same set V will not form a vector space. 
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Again I will take an example of matrices. So if we have a set of n by n square matrices - 

but these square matrix are non singular matrices - with usual matrix addition and scalar 

multiplication is not a vector space. We have proved that set V of n by n square matrices 

with usual matrix addition scalar multiplication is a vector space but when it comes to 

square matrices with usual matrix addition scalar multiplication. then it is not a vector 

space. And The reason is the additive identity is the null matrix. We have proved that 

additive null matrix is the additive identity. With this additive identity is the null matrix 

which is non -singular matrix. Null matrix has determinant 0 and it becomes nonsingular 

it becomes a zero matrix. So null matrix does not belong to this set of n by n square  non -

singular matrices and that is the reason that this will not form a vector space. So While n 

by n matrices they form a vector space, but when it comes to n by n square non singular 

matrices, they do not form a vector space. So V is not a vector space. 
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Now we talk about some simple results which will hold for all the vector spaces 

irrespective of the set V, irrespective of the operations which we define. The first result is 

that there exists only one additive identity in a vector space. By this, I mean to say that if 

we have a vector space, then there exist only one additive identity. You cannot have 2 

additive identities in a given vector space whatever be the vector space - whatever be the 

operations. Now, to prove this we prove it by contradiction. By this, I mean to say we 

assume that there are 2 distinct additive identities: theta 1 and theta 2. So by this, I mean 

to say that theta 1 plus theta 2 is equal to theta 1 because theta 2 is additive identity. So 

when additive identities added into theta 1 will have theta 1; but theta 1 is also an 

additive identity; so theta 2 plus theta 1 - theta 1 being additive identity - then added into 

theta 2 - it will not change theta 2; so theta 2 plus theta 1 is equal to theta 2. When theta 1 

being considered as additive identity and by this I means to say theta 1 plus theta 2 is 

equal to theta 2 plus theta 1 and this means theta 1 is equal to theta two. So this means 

theta 1 is equal to theta 2. theta 1 plus theta 2 is equal to theta 2 plus theta 1. Why? 

Because it is commutative.  So they are equal - that means this is equal to this; theta 1 is 

equal to theta 2. So what we have started with we have started with two different additive 

identities theta 1 and theta 2. They are not equal; but finally we have proved that they are 

equal. So it is not possible that a vector space has 2 distinct additive identities; even if we 
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start with different, we finally arrive at the same values. So by contradiction, we have 

proved that they are exists only one additive identity in a vector space. 
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The next result says that there exist only 1 additive inverse for given alpha and V. So any 

member alpha and V cannot have two different inverses. So Again we prove this result by 

contradiction. So Let us say alpha 1 and alpha 2 are 2 distinct inverses of alpha in V; so 

they are 2 different inverses alpha 1 and alpha 2. So Since alpha 1 is a inverse of alpha, 

alpha plus alpha 1 is equal to theta by definition of inverse. Similarly alpha plus alpha 2 

is also theta because of definition of inverse. Now to prove we will actually prove that 

Although we have started with different values of alpha 1 and alpha 2, but finally we will 

prove that alpha 1 is equal to alpha 2. Now to prove this, what we have done is in the 

first, I have added alpha 2. So alpha 1 plus alpha 1 plus alpha 2 is equal to theta plus 

alpha 2; I have added alpha 2 in this, but what is theta plus alpha 2? It is nothing but 

alpha 2 because theta is the additive identity. Now in this, I add alpha 1. So alpha plus 

alpha 2 plus alpha 1 is equal to theta plus alpha 1; theta plus alpha 1 is alpha 1. But what 

is this? alpha plus alpha 1 plus alpha 2 is equal to alpha 2. 
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So if I start with this, alpha 2 is equal to alpha plus alpha 1 plus alpha 2. But since this 

addition is associative so I can write down this as alpha plus alpha 1 plus alpha 2; that 

means I can change the brackets like this. But then this addition is commutative. So I can 

change the order; so it is alpha plus alpha 2 alpha 1 and again, I can change this bracket 

because of associative property. So what I have is alpha plus alpha 2 plus alpha 1; but I 

have already proved that this is nothing but alpha 1. So I have started with the alpha 2 

and I have arrived at alpha 1. What does it mean? It means alpha 2 is equal to alpha 1. 

But this is the contradiction; that simply means it is not possible to have 2 different 

additive inverses for a given element in V and that means inverse of a given alpha in V is 

unique. So for a vector space, we will have a unique inverse for a given vector. 
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The next result says that if V is a vector space, then 0 multiplied by alpha is equal to 0 for 

every alpha in V and scalar 0 and c multiplied by 0 is equal to 0 for any scalar c and 0 in 

V. Now one thing to be observed here is that this 0 and this 0 they are different. This 0 is 

a scalar; when multiplied by an alpha vector, the result is a vector. So this 0 is a 0 vector 

and in this case this is a 0 vector and this is also a 0 vector. Now to prove this we start 

with the first one - 0 multiplied by zero. Now I write this as 0 as 0 plus 0 multiplied by 

alpha. It is absolutely no problem because 0 is a scalar quantity; so 0 plus 0 is a scalar - 

still 0. So 0 plus 0 alpha is equal to 0 alpha plus 0 alpha. Why? Because This is 

distributive because it is a vector space; so distributive property is satisfied. Now adding 

both sides minus 0 times alpha. So if I add this, 0 alpha plus minus 0 alpha is equal to 0 

alpha plus 0 alpha - this is what I had - plus minus 0 alpha - I have added this in both the 

sides. Now the left hand side is simplified as this, because 0 is a scalar which you can 

take outside; so 0 multiplied by alpha plus minus alpha is equal to 0 alpha; and then I 

have so distributive property so I apply distributive property here and what i have is 0 on 

the left hand side. On the right hand side, I will have 0 alpha. So i have proved that 0 is 

equal to 0 alpha; so that first part has been proved. This is true for any scalar 0 in any 

vector alpha. 
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Now this for the second pra this for the second part, the proof goes like this. I start with c 

0 - zeroes are vector now - is equal to c multiplied by 0 plus 0 - 0 being the additive 

identity; so 0 plus 0 is also 0. So c 0 is c dot 0 plus 0. This dot represents scalar 

multiplication. So this can be written as c dot 0 plus c dot 0 - distributive properties 

applied. Now adding both sides minus c times 0, again the same way this can be taken 

together in the left hand side, then it is 0 and then you can again apply the associative 

property on the right hand side. So this proves that 0 is equal to c dot 0 and that proves 

the second part of the result. 
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Now the fourth result says that if V is a vector space and c dot alpha is equal to 0, then c 

is equal to 0 or alpha is equal to 0. So whenever c alpha is 0, then one of the two things 

must happen - either the scalar is 0 or the vector is the null vector. To prove this, we first 

consider c as not zero. With this, we will prove that alpha is equal to 0. So c is not 0 but c 

alpha is 0. Then I can multiply this quantity by 1 by c. So 1 by c into c alpha is 1 into - I 

am multiplying 1 by c on both the sides; so 1 by c into 0 is because - 1 by c is possible 

because c is not zero, that is why I have taken c as not 0; so I am multiplying 1 by c on 

both the sides. 1 by c into c alpha is equal to 1 by c into 0. So right hand side is 0 but this 

side is 1 into alpha; but we know 1 is a vector space, so 1 dot alpha is equal to alpha; so 

this proves alpha is equal to 0. Now to prove the other part, we consider alpha not 0 and 

by adding minus c alpha on both sides and proceeding in this particular manner, we can 

prove that c is equal to 0; that establishes this result. 
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Towards the end of the lecture, I will give few exercises. The viewers are advised to go 

through these exercises. They actually give some important results related to vector 

spaces. Exercise 1 says that if V is a vector space, then minus 1 into alpha is equal to 

minus alpha for every alpha in V. While the second exercise says that if u v w belong to 

vector space V such that u plus v is equal to u plus w, then v is equal to w; so it is 

actually a cancellation law. u and w can cancel out and we can have v is equal to w. So to 

prove this, you simple you have to add minus u on both sides and apply associative 

property. The third exercise is that if alpha is not 0 and a alpha is equal to b alpha, then a 

is equal to b. So this is again a cancellation property where we can add the 2 where you 

can cancel the two scalars. Now to prove this, you have to simply add minus b alpha on 

both the sides and apply the results which we have already discussed.  

 

So viewers, today we have discussed vector spaces. I have started with differential of 

vector spaces. I have given some examples where we have define the vector space vector 

V. We defined operations addition and multiplication and we have seen whether a given 

V plus star is a vector space or not. We have taken some examples where it forms a 

vector space and we have illustrated in few examples where the given set with given 

operations do not form a vector space. Thank you. 


