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Lecture - 2
Matrix Algebra Part- 2

Welcome viewers! This is my second lecture on matrix algebra. In my first lecture on
matrix algebra, | have introduced various concepts related to matrices. | have defined

matrices; | have introduced various operations on matrices.
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* Introduction
« Addition of Matrices A+B
« Multiplication by Scalar kA

» Multiplication of Matrices AB
. A2
. Ap

| have introduced addition of 2 matrices and its various properties. After that, | have
introduced multiplication of matrix by a scalar quantity. Then multiplication of 2
matrices has been defined and we have discussed that matrix multiplication is not
commutative. We have discussed the associative property and distributive property of
matrices. We have introduced how we multiply a matrix by itself and what is the meaning
of A square. | have given A raise to power p. After introducing all these things, now we
are in a position to discuss expressions of the form A square plus 5 A minus 3 and so on.

So to start with, let us discuss what’s the meaning of A cube minus 5 A minus I.
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Compute A’ - 5A - |

| happens to be the identity matrix. A has to be a square matrix; so that this expression
becomes meaningful. The order of A and the identity matrix | must be the same. Let us
compute this for the matrix A. Now to compute A cube, one has to first compute the
square A square as this. Now to compute this, if you multiply the first row and the first
column of A, we get the element 3 and when the second row is multiplied by the second
column, we get the element 5 as the element in the product matrix and the next element
third row third column gives 4. Similarly, other elements can be computed. Once we get
A square, we can compute A cube which is A square multiplied by A. Now the order of
A is not important. Here, we can multiply A square by A or we multiply A by A square

because this is associative and this gives me the result as this matrix.
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Once | have computed A cube, the values can be substituted in this. So | have 2 times the
value of A cube minus 5 times A and the identity matrix of order three. 2 multiplied by A
can be computed as 6 8 16 in the first row; 4, 22 and 12 in the second row; 8, 12 and
minus 6 in the third row and this minus 5 can be taken inside and this matrix is nothing
but minus 5 A, and then this matrix. and What we have is the final result as this matrix.
So if i had A as the 3 by 3 matrix, then 2 A cube minus 5 A minus | is also a 3 by 3
matrix and it is computed as this.
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(i) APAI=AP*9
AAA.AAAA.A =Ar*q

(ii) (;\D)Q:Am

AAA.AAAA.AAAA.A.AAA.A

< 4 o p

Now | can introduce the meaning for A p multiplied by A qg; by A p i mean to say A
multiplied p times and A q means A multiplied q times. So if i multiply A p and A g, |
have a matrix A raise to power p plus g. Now this can be proved easily. Like the first
expression, A p is this - that is A multiplied p times - and this is A g, that is A multiplied
g times. Now you can notice that total number of A’s they are p plus g and that is why we
have A raised to power p plus g on the right hand side. Similarly A p when multiplied q
times, we have a matrix A raised to power p q and this can be proved as this. Here A 'is p
times, this is AP; this is another A p and this is to be multiplied g times. So and these are

g such expressions and what we have on the right hand side, A raised to power p g.
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(iii) (AB)®=APB® if AB=BA

Proof:
(AB)(AB).(AB) =(A(BA)B)..(AB)

(A(AB)B).(AB) =p?B? (AB)=A"B’
p 2

p 2

Now AB raised to power p can also be computed as A raised to power p, B raised to
power p, provided AB is equal to BA. Now that means the matrix A and B must be
commutative. Now to prove this, | have to multiply AB p times; so these are AB matrices
p times. Now what | can do is | can combine the first two terms and then these are
remaining p minus 2 terms; | am writing the first two terms in this particular form, the
reason being that matrix multiplication is associative. So | can very easily write down
first two terms in this form. Then since matrix multiplication is commutative - that is
what i have assumed here - so | can write down this BA as AB, and this gives me the
result as A square B square. So this is written as A square B square and rest of the p
minus 2 terms, same thing can be applied and finally what we have is A p multiplied by
B p.
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Transpose of a matrix: AT

(a”)T:(ajl) "'l'l

13
Example 12 5

A= [(AT) =|2: 1]

%21
3 2] 52

After this, we can introduce the transpose of a square matrix. The transpose of a square
matrix is denoted by A raised to power A T and if aij is the typical element of the square
matrix A, then its transpose is aji. That means, the row element is written as the column
elements. So, rows and columns are interchanged. Now this is aij T is equal to aji for all
values of i and j and what we get is a transpose matrix. For example, if i have a matrix A
as 2 by 3 matrix, then its transpose will be 3 by 2 matrix. What | have done is the first
row of A becomes first column of A transpose, while the second row of A become
second column of A transpose. So rows and columns are interchanged; rows of A become

columns of A transpose. Similarly, the columns of A become rows of A transpose.
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Properties of transpose of a matrix:

1.(AT)"=A
A=(a,l).

AT=(a,)

(AT)"=(a,;) V ij

Let us now discuss some properties of transpose of a matrix. We start with the first
property A transpose and its transposes A. So if A is aij, then A transpose is aji as we
have defined. Then A transpose and its transpose will again become aij and this is true for

all i and j. So we have proved that A transpose transposes A.
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2.(A+B)"=AT+ BT
Let A=(a,),B=(b,),C=A+B

(A+B)'=CT

(¢ )’ =(c;)=(a;+b)

= AT+ BT




Now the second property is that A plus B transpose is A transpose plus B transpose. For
this, let us consider A as aij, matrix B as bij matrix, then C is sum of A and B. So cij - the
typical element of C matrix - will be aij plus bij. Then the transpose of A plus B is C
transpose and cij transpose will be cji. Columns and js are interchanged; now cji will be
aji plus bji by definition. Then what is aji? aji is A transposition because A is defined as
aij and bji is B transpose by this; so we have proved that C transpose is equal to A
transpose plus B transpose, that is, A plus B transpose is equal to A transpose pus B

transpose.
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3.(kA)T=KkAT

(kA)"=(ka, )" =(ka;)=k(a )=KkAT

4.(AB)"=BTAT
Consider the ( ij )™ element of ( AB )’

=(},1 )" element of AB

=" rowof A xi" column of B

Next property is that scalar multiplication by k, and then the matrix A is transpose is k
times A transpose. To prove this, I write down kA transpose as having a typical element k
aij, because every element of A is to be multiplied by k by definition of this
multiplication; then k aij transpose is equal to k - k is a scalar - so nothing will happen to
this, but aij will become aji as we take the transpose; and this can also be written as k
multiplied by aji. | am taking k outside, because this is common for all the elements; so
finally, what we have is kA transpose. Next is AB transpose, that is multiply the 2
matrices A and B and then take the transpose - is the same as you take the transpose of B

and then multiply it by A transpose. | consider the ijth element of AB transpose; A, B



multiplied and then T . Basically A B transpose is nothing but ji’th element of A B. i’th
clement of AB transpose is ji’th element of A B. Now by definition of multiplication, we
can say that ji’th element of A B is nothing but j’th row of A IS multiplied by i’th column
of B, because we said that matrix multiplication is row multiplied by column.
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2ll=a b +ab +.+a b

i1 1 2 2 jn ni

= i row of B™ x
™" column of AT

=(i,j )" element of BTAT
(AB)"=BTAT

So | can write this down in this manner. This is the j’th row and this is the i’th column of
the matrix. So if  multiplyajlbyb1lj, a2 b2 j, ajn bnjthen what we have is this
product. This is the typical element; now this term is rearranged in this particular manner.
So this becomes this- | am writing as a row - and this these terms - | have arranged in
columns. So this product is same as this product. But one can very easily observe that this
is nothing but the 1’th row of B transpose, while this is nothing but the j’the column of A
transpose. That means this product represents the 1j°th element of B transpose A
transpose, as by the definition of matrix multiplication. So we have proved that A B
transpose is B transpose and A transpose; this is important because A B multiplication is
not commutative. So if we have to take transpose of A B, then B we have to first take the
transpose of B and then multiplied by A transpose. So the order has changed if you take

the transpose. So this is important.
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Trace of a Matrix

Trace A = Sum of diagonals Z aii

Trace A=6

Now, next concept is trace of a matrix. Now, trace of a given matrix A is defined as sum
of its diagonal elements. Now Diagonal elements are identified by equal indices; so tray
sum of diagonal elements is nothing but aii summed over the index i. That means, if the
matrix A is given as this 3 by 3 matrix, then trace of A will be the sum of the diagonal
elements this, this and this. That means trace of A is 6. Now we define some special type

of matrices.
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Symmetric Matrix AT=A

10



The first is the symmetric matrix. The symmetric matrix is the matrix which is having
same which is same as its transpose. That is, A transpose is equal to A for a symmetric
matrix and by this, | mean that ij’th element is same as ji’th element in a symmetric
matrix. So if | have a square matrix A, then this matrix will be symmetricifa 2 1 is a
sameasal2anda3lisasameasal3 by the definition, anda 32 issameasa2 3;
so this is the diagonal and these are the elements below the diagonal and these are the
elements above the diagonal. So the elements are mirror images - this element is same as
this, this elements is same as this, this element is a same as this. So this is the typical

property of symmetric matrices.
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Skew symmetric

In skew symmetric matrices, we define A transpose as minus A. That is, the ij’th element
of A is the same as negative of aji. That is, if | simplify then aij plus aji is 0. So in a skew
symmetric matrix aij plus aji is 0 and aij is equal to minus aji. That means, the i’th
element aii will be 0. Only then this is possible. Like this matrix B is skew symmetric; a 1
2 isasame as a 2 1 with the negative sign; a 1 3 and a 31 they differ with negative sign;
a2 3 and a 3 2 they differ with negative sign, while on the diagonal all the elements are 0.

So, this is a skew symmetric matrix.

11
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This is an example - a 3 by 3 matrix; this matrix is symmetric matrix. One can see that
these are the diagonal elements, and the upper side is the upper side is the mirror image is
the image of the lower side. Here we have 2 - here also we have 2; this 3 is same as this
element; this element is same as this element. So this matrix happens to be a symmetric
matrix. Here aij is equal to aji for all the elements. While this matrix is a skew symmetric
matriX, look at the diagonal element; all elements are 0. This is 2, so here we have minus
2. If this element is minus 3, this will this element is 3 and if this is 4, this is minus 4. So
this is the diagonal element and this is the mirror image on this side. While this matrix C
- we have this diagonal. This element is not the same as this; this element is not the same;
this element is not the same. So this this matrix is not skew symmetric because this is
now 0. Although this element is this and this element are rim mirror images, this is 4
and this is minus 4; but because this is minus 2 and this is 1, so this matrix is not skew
symmetric. This matrix is not symmetric because this is 1 and here we have minus 2; so

this is neither symmetric matrix nor skew symmetric matrix.

12
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Any real matrix can be expressed as a sum
of a symmetric matrix and a skew symmetric
matrix

C,, =%(C;+C;)+12(C;-C,)
D =%[(Cy)+(C;)] =%[C+CT]=D"

D is symmetric .

E =%[(C,)-(C,)] =%[C-CT]
ET =%[CT-C] =-%[C-CT]=-E

E is skew symmetric

Now this is an important result. It states that any real matrix can be expressed as a sum of
a symmetric matrix and a skew symmetric matrix. Now this can be proved easily. What
we do is a typical element Cij of the matrix given matrix can be written as half Cij plus
Cji, plus half Cij minus Cji. That means what | have done is | have added and subtracted
Cji and the result is Cij. So i have manipulated Cij in this particular manner. Now | say
that the D matrix is given by this half Cij plus Cji. One can notice that D is a symmetric
matrix; the reason is if | take that transpose of D, D transpose, then this becomes Cji this
becomes Cij and sum is commutative. So this is nothing but C plus C transpose so this is
D transpose. So D and B transpose are same; so D is a symmetric matrix. And this matrix
C and a half Cij minus Cji - I denoted by E - and | will prove that this E is half C minus C
transpose. This is C and this is C transpose, but if | take the E transpose then half C
transpose minus C - this becomes transpose; C transpose transpose is C. So what | have is
minus half outside and then we will have C minus C transpose and the result is E with the
minus sign with the minus sign. So E is skew symmetric matrix. So the matrix C is

represented as a sum of symmetric matrix and a skew symmetric matrix.

13
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3
D=12(A+A")=3
K

D is symmetric

Now this I illustrate with an example. So if | have A matrixas3 2 14 135 12 or
3 by 3 matrix, then it’s a transpose will be 3 4 5 in the first row; first column becomes
first row, second column become second row, third column becomes third row in A
transpose matrix. Then D is half A plus A transpose; if you sum this up, 3 plus 3 by 2 is
3,2 plus 4 by 2 is 3, 1 plus 5 divided by 2 is 3. Similarly other elements can be
computed; so this is D and one can notice that this matrix is symmetric. This 3 and this 3
are the same, this 3 and this 3 are the same, this 2 and this 2 are the same; so this is

symmetric matrix.

14
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E=12(A-AT)=

3 3 3|0 -2

3 2 1
4 1 3|=3 1 2|+*|1 0 1
5 32 3 22|12 10

Now if you compute, the matrix E is half of A minus A transpose for the given matrix.
Then it comes out to be this 3 by 3 matrix and one can note down that this matrix is
symmetric - a skew symmetric; this is minus 1 so this is 1, this is minus 2 so this is 2

this is 1 and this is minus 1 and the diagonal elements all are 0. So this is a skew
symmetric matrix. So the | have written this square matrix A as this symmetric matrix
plus this and a skew symmetric. So any square matrix can be written as a sum of a

symmetric matrix and a skew symmetric matrix.

15
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AAT is always symmetric

Proof
(AAT)T = AAT
(AAT)"=(AT)T(A)T=AAT

ATA is also symmetric

Then one can prove that A multiplied by A transpose is always symmetric. To prove this,
we start with AA transpose and its transpose. If this comes out to be AA transpose then
we have proved the result. So to prove this, | start with AA transpose transpose as A
transpose transpose. This is the B matrix, this is AB; so this is B transpose A transpose.
So | had A transpose transpose and A transpose but i have already proved that A
transpose transpose is nothing but A, so this multiplication is nothing but A A transpose.
So AA transpose transpose is the same as AA transpose and that is a basic property of
symmetric matrices; Enhance We can say that AA transposes a symmetric matrix.

16
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(A + A7) is Symmetric

(A-AT)is Skew Symmetric

(A-AT)'=AT-A=-(A-AT)

Now A plus A transpose is always symmetric. Similarly A minus A transpose is skew
symmetric. These are the properties one can very easily prove; then the next property is -
this this can be easily proved - A minus A transpose transpose is equal to A transpose
minus A transpose transpose | have written as A is equal to - | have taken minus outside -
so the A minus A transpose. So what | have proved is A minus A transpose transpose as
minus times A minus A transpose and that proves the skew symmetric property of A

minus A transpose.

17
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Triangular Matrix

a a -

.. 8
Jol...m2...0. mn

On diagonal i =
On lower side of diagonal i > |

')

Now for triangular matrices, | consider a square matrix A of size m by n. Now in this
square matrix, one may observe that the elements which appear in the diagonal they all
have row index equal to column index. Like the elements which | have shown in this box,
the first element is a 1 1, its row index and column index they are equal to 1; the second
elementa 2 2, row index, column index they are same and the last element amn - here
also the row index and column index are the same. So this is the typical characteristic
diagonal elements that i and j are equal, but if you consider this set of elements in the
matrix then one may easily notice that the row index is bigger than the column index for

each and every element here.

Like if we consider the element a 2 1, then the row index 2 is bigger than the column
index 1. Similarly for this, n is bigger than 1; same thing happens here and is this is true
for all elements appearing in this. So we say that aij - if it appears in the lower side of the
diagonal then i is greater than j. Similarly, if you consider the upper side of the diagonal
then all elements have row index smaller than j like a 1 2. The row index 1 is smaller than
the its column index 2. Same things happens for a 1 and a 2 and and so on. So for all the

elements which appear in the upper side of the diagonal i is less than j.

18
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Upper Triangular

11 2 6§
0 2 1
0 03

Now on the basis of this, | can define upper triangular matrix. Now in this square matrix,
if we consider the element shown in this triangular box, all elements either they are on
the upper side of the diagonal or they are on the diagonal. So | define an upper triangular
matrix is the one in which all elements which appear on the lower side of the diagonal
that is aij is O - i greater than j, i greater than j, i is greater than j, i is greater than j; for all
these elements they are 0 and a non O elements appear only in the upper side of the
diagonal right. So the upper triangular matrix is one where non 0 elements appear on the

upper side of the diagonal, that is diagonal including and the triangle.

For example in this square matrix, all the elements which appear on the lower side of the
diagonal they are 0. aij is 0 when i is greater than j and all the elements which are either
on the diagonal or on the upper side they are non 0. Like aij is not 0 when i is less than
equal to j, this equality is taken for the diagonal elements. So this matrix is an upper

triangular matrix; so elements on the upper side they are non 0.

19
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Lower Triangular

A:Jé

a;=0 i<j
#0

Similarly one can define a lower triangular matrix. So if in the square matrix A, if the non
0 elements appear in this triangular box only and the outside all these the elements are 0;
then that matrix is called a lower triangular matrix. By this, | mean to say that aij is 0
whenever i is less than j. You can notice that these are the elements which have to be 0.
For them i is less than j, 1 is less than 2, 1 is less than n. So all these elements have to be
0 for a lower triangular matrix but the elements which are inside, for them i is either
equal to j for the diagonal or i is greater than j and these elements are non 0. For example,
we have this lower triangular matrix here all these elements are 0 and non O elements

appear in the lower triangle.

20
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Properties Of Triangular Matrices

« Sum of two lower triangular matrices
is also a lower triangular matrix

a;,b,;=0thenc,;, =0fori<j

111

* Product of two upper triangular matrices
is also a upper triangular matrix

Now these triangular matrices appear in many engineering applications and various
properties of these matrices are useful. For that purpose, we will discussing properties of
triangular matrices. Now the first property we will be like discuss is that sum of 2 lower
triangular matrices is also a lower triangular matrix. Now this, I can prove by simple fact
that aij and bij are O if they are at the lower side. That means i is less than j; then this aij
and bij are 0 for lower triangular matrix whenever i is less than j. Then so will be cij

and that proves that the sum matrix will also be a lower triangular matrix. Now similar
result is obtained for the upper triangular matrix and that can be proved on the same lines
and the result is that sum of two upper triangular matrices is also an upper triangular
matrix. Now this is regarding the sum of 2 triangular matrices. Now this result is that

product of 2 upper triangular matrices is also an upper triangular matrix.
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For upper triangular matrices A and B

b

1) |

(=0;i>j ¢=0;i>j by,
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I

=3 b1 3 b21+" b3j

Now to prove this result, | consider 2 upper triangular matrices - A and B. Now since
they are upper triangular matrices, so we assume that aij and bij are 0 whenever i is
greater than j. Now we will prove that the product matrix will also be an upper triangular
matrix; that means the product element cij will be 0 whenever i is greater than j and non 0
whenever i is less than equal to j. For this purpose, | consider a typical element cij of the
matrix. Now this cij element is obtained actually from the product; so to obtain cij i have

to multiply the 1’th row of the matrix A by the j’th column of matrix B.

So if | write down the i’th element, i’th row of a matrix A - and this is the j’th column of
matrix B - notice that some of the elements in this mat in this row matrix they are orange
and some of the elements here are also orange. Actually they denote that these are the
elements which are 0. They are 0 because for all these elements - i less than j - they are 0.
While i greater than j, they are non 0. Same thing is applicable here. Now if I multiply
them, then the product is obtained as cij isequal toai 1 b 1j,ai 2 b 2 j, aij bjj. aij bjj
Then we have this element multiplied by this element and so on. ain multiplied by bnj
will be the last element. Now one can notice that in this, every term involves an orange
element that means 0. So this is 0 because of this 0; this is 0 because of this O; this term is

0 because this term is 0 and here both of them are 0. Same thing happens here and
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that means cij is 0 whenever i is greater than j. Now we have to prove that on the upper

triangle all the elements need not be 0.
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So for this purpose, to show that the ah elements cij appearing on the upper side of the
diagonal cij is not 0 whenever i is less than equal to j. We consider this element cij
whenever i is less than equal to j here since i is less than j. So one may notice that aii
comes first, then aij because i is less than equal to j. So all these elements are 0 but these
elements are not 0. The same thing appears here: j comes first - bij a comes first - and bjj
comes next. So these elements are non 0. So when you take the product cij, ai 1
multiplied by b 1 j - it is 0, because the i 1 is 0 - ai 2 multiplied by b 2 j -itis 0
because thisis 0 -ai 3 b 3 jis 0, but aii bij this is not 0. Similarly ai plus 1 ai - ai plus 1
bi plus 1 j is not O; the next element is not 0 and up to bjj all elements will be
contributing while after this these terms will be 0. So what we have is bij plus 1 bj plus 1

J - this is 0 - and the same thing happens with the last element ain bnj.
So all these terms will not be contributing - these terms will not be contributing; cij is not

0 because sum of these terms will not be 0. So cij is not 0 when i is less than equal to j;

that proves our result that sum of 2 upper triangular matrices is also an upper triangular
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matrix. Now the similar result can be obtained for lower triangular matrices, that means
sum of 2 lower triangular matrix is a lower triangular matrix and product of 2 lower
triangular matrix is also a lower triangular matrix. After this we come to the next concept

complex matrices/.
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Complex Matrices

Matrix with complex entities

Example 1 i
*i 12

Addition of Complex Matrices

« Commutative

* Associative

* Identity matrix

« Additive inverse

Viewers, so far we were discussing matrices which have real elements. But they can be
complex also and such matrices come under complex matrices. So if we have a matrix
with complex entities then we have a complex matrix. For example, this 2 by 2 matrix its
ah first row second element is | - the initial number - while the second row has 1 plus i
and 2 plus I - they are complex numbers; so this a matrix having complex entities. So it
is a complex matrix. Now we have established number of results for real matrices.
Similar results can be obtained for complex matrices. We can add 2 complex matrices

and one can prove on the same lines that addition of complex matrices is commutative

and proof is not difficult because real numbers are commutative.
So every element of real symmetric real matrix is a commutative; same thing happens

with complex matrices. Since we complex numbers are commutative in nature and so are

the complex matrices, similarly one can prove the associativity of addition of matrices if
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the real matrices are associative. Sum of two sum of real matrices are associative; so is
sum of complex matrices are also associative. As far as identity matrices are concerned
we can define identity matrix as the same additive identity; this works for complex
number also. Additive inverse can also be defined on the same lines, that is additive
inverse of a given matrix is the one which gives on addition the null matrix. So all these

concepts are in line.
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Multiplication by Scalar

k may be complex
Multiplication of Matrices
Row by Column multiplication

* Non Commutative
« Associative
* ldentity matrix

Now when it comes to multiplication by scalar then k may be this scalar k may be
complex or it may be real and when we multiply k by a complex matrix then the result
will be a complex matrix. Whether it is real or not, the result will be complex. Now when
it comes to multiplication of matrices, then again it is row multiplied by column
multiplication as usual and again multiplication of 2 matrices will again be complex. So
all those properties which we have proved for real matrices they are applicable; they are
non commutative as we have proved for real matrices; they are associated because
complex numbers are associative - you can add them in any order. Similarly the existence
of identity matrix - the identity matrix which works for matrix multiplication for real

matrices - that works for complex matrices also.
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Complex Conjugate Of A Matrix

A =(3 ) 1+#i1 °2-1: 3

A= 1-i 4 2+i

Example I 2 44
1-i <2+i: 3
A= 1+i 4 2-i
-1 2 4+2i

A=A For Real A

So we define a complex conjugate of a matrix. So if we have a matrix Aij, then complex
conjugate of a matrix is denoted by a bar ij and its element is aij bar; that means the
element is the complex conjugate of the element Aij. So the elements of complex
conjugate aij bar is the complex conjugate of corresponding matrix. Like if | have a
matrix A consisting of complex numbers, then its conjugate A bar will be given by this
matrix; you may notice that 1 plus i is the first element in the first row and 1 minus i is
the is the complex conjugate of 1 plus i appearing in the first row first column. 2 minus i
-its complex conjugate is 2 plus I; conjugate means the imaginary part will be multiplied

by minus 1.

So 2 minus i and here we have 2 plus i and this is actually true for each and every
element. When it comes to the next element 3, 3 is a real number - its complex conjugate
remains the same. So this is not affected but 1 minus i here we have 1 plus I, 4 s real it
is not affected. 2 minus i is the complex conjugate of 2 plus; here we have I, here we
have minus i. So that way this element - this matrix — is being given as A, then A bar -
the complex conjugate - will be in this matrix and one may notice that A bar is equal to A
for real matrix A. So we can extend this concept to real matrices also, but in that case a

complex conjugate remains the same.
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1+i 2-i 3
A=i1-i7 4 2+i
i 2 4-2i

1-i S1%E -

2
2-1 4+2i

A* Conjugate Transpose matrix of A

Now if given matrix is A as this, then we define A star as complex transpose matrix of A;
complex transpose matrix is the one. It is the combination of 2 operations; we take the
conjugate of individual item and then take its transpose. For example if A is this, then 1
plus i is 1 minus i. This is appearing in the first row first column. But 2 minus i is the
element appearing in the second row of the first column; its conjugate 2 plus i appears in

the second row first column.

So this row, this column and this row - they are been interchanged. That is why it is A
star; so we denoted it by A bar transpose. Two operations are taking together: bar and
transpose. This can be checked for other elements also. It is 1 minus | - 1 plus i - complex
conjugate of this. This appears in the first row second row first column and this appears
in the first row second column and one can check it for each and every element here. This
3 - its conjugate is 3; this appears in first row third column, this appears in third row first

column.
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Hermitian Matrix A=AT

A=A ForReal A

Real symmetric matrix is Hermitian

Now on the basis of that, we can introduce Hermitian matrices. A Hermitian matrix is a
sguare matrix in which the matrix A is same as its complex conjugate transpose. So A bar
transpose is same as A for a Hermitian matrix. As I told you earlier, that A bar is equal to
A for real matrix; so if a real symmetric matrix is Hermitian also because the real
symmetric matrix will satisfy this property trivially. So a real symmetric matrix is a

Hermitian matrix, but this is not true for complex matrices.

(Refer Slide Time: 40:54)

Skew Hermitian aA=.AT

Real skew Hermitian matrix is skew
Symmetric
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Now when it comes to Skew Hermitian matrix, then it is defined as a square matrix A
which is equal to minus times A bar transpose; that means the element aij in A becomes
minus aij bar in A bar transpose. So if this property is satisfied, then we say the matrix is
a Skew Hermitian matrix. Now this is the result which can be said about real matrices
that a real Skew Hermitian matrix is Skew symmetric, because the for a Skew symmetric
matrix which is real, A bar transpose is equal to A bar n that gives us a Skew symmetric

matrix.

(Refer Slide Time: 00:41:41)
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Now if we consider this 3 by 3 complex matrix, then its A bar transpose is 1 plus I, 1
minus I, 2 minus I, 2 plus I, 3 and we have 3 here; one minus I, 1 plus I, 4 and we
have 4, 2 plus I, 2 minus I; Then we have i here minus I, 2 and 2, 4 minus 2 iand 4
plus 2 i. Now any matrix A can be written as this sum - like we have done for real
matrices. A is written as half A plus A bar transpose plus half A minus A bar transpose.
So what | have done is | have added and subtracted this from this - from the matrix A.
Now one can prove that the first part - half A plus A bar transpose - is Hermitian, while
this part is Skew Hermitian. So what | do is | take this part as H - half A plus A bar
transpose; for given this A, I add A bar transpose and take half of it so | have this matrix.

Now in this matrix - this is this matrix is Skew Hermitian - you notice that this is
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symmetric and these are the conjugates. This and this are same; 3 plus i by 2 is here 3
minus i by 2. | have taken the conjugate and then transpose. Then 4 minus i by 2 - here |
have 4 plus i by 2. So this matrix is Hermitian. If you take its H bar transpose, you will
have the same matrix. So this matrix is Hermitian. These elements are H bar transpose;
they are equal; same thing happens here. It is the diagonal and that means H bar transpose

is equal to H and this proves that A is Hermitian.

(Refer Slide Time: 43:52)
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So with the given matrix A, A bar transpose is computed as this. Then the matrix S which
is half of A minus A bar transpose is computed from these two matrices. So we have 1
plus i and 1 minus i - so it is subtraction - so it is i here; 2 minus i minus 1 plus i by 2 is
this element; 3 and this minus i becomes plus I, so 3 plus i by 2. So that is how we
calculate this matrix S and this is the diagonal element. Here we can notice that S bar

transpose is equal to minus S and S is a Skew symmetric matrix on the spaces.
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So what | have done is | have calculated H, | have calculated S. H is half of A plus A bar
transpose, S is half of A minus A bar transpose and my claim is that H is Hermitian and S
is Skew Hermitian and sum of these two matrices is the given matrix A. One can check: 1
plusiis 1 plus I; so H plus S is A. So any matrix which is complex can be written as sum

of a Hermitian matrix and a Skew Hermitian matrix.

Now one can notice that in Hermitian matrix, the diagonal elements have to be real
because if they are not real then they cannot satisfy the property that H is equal to H bar
transpose. Similarly on this Skew symmetric matrix, these elements have to be imaginary
and of course, they have to be complex conjugate. This and this - they have to be minus
of complex conjugate, because S has to be Skews Hermitian. So this is being shown 1
plusiis 1plusl; 3 minusiby2,3 plusiby2 is3 and so on.
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Orthogonal Matrices

AA'=ATA=|

Identity Matrix is orthogonal matrix

Now after this, I introduce orthogonal matrices. Orthogonal matrices are used extensively
in mathematics and we define a square matrix to be orthogonal if it satisfies this property;
that is, A and A transpose - if they multiply together - they give us identity matrix. That is
A A transpose, is equal to A transpose A, is equal to I. This property is actually satisfied
by identity matrix. One can actually work out A and A transpose; A happens to be
identity matrix, its transpose is also identity matrix because identity matrix are diagonal
matrix. So the transpose will also be the same and multiply identity matrix with itself is
again an identity matrix; so identity matrix is a good example of orthogonal matrices.
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Example:
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“sin0  cos( -sin0 “cos(¥|

The other example is, we have A matrix 2 by 2; cos theta, minus sin theta in the first row;
sin theta, cos theta in the second row. Then A transpose happens to be cos theta, sin theta;
this column becomes this row and this column becomes this row. If you multiply the 2
cos square theta plus sin square theta, that is, 1 cos theta multiplied by sin theta minus sin
theta multiplied by cos theta, they will cancel out; so this element is 0. Similarly if you
multiply this sin theta cos theta by sin theta cos theta, this column will have 0 and finally
when sin theta multiplied by sin theta - sin square theta- cos theta multiplied cos theta -
cos square theta - and the result is one. So A A transpose is nothing but identity matrix;

S0 we can say that the matrix A is an orthogonal matrix.
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Unitary Matrices

AA =A A=l

Identity Matrix is Unitary matrix

Real unitary matrix is orthogonal matrix

Now, unitary matrices are square matrices which satisfy this property: that is, A
multiplied by A bar transpose is equal to A bar transpose A and the product is I. Now if
the matrix A is complex, only then A bar transpose is a mini; if it is a real then A A bar
transpose is nothing but A transpose itself and in that case it is A A transpose is equal to
A transpose A is equal to I; that means, it is the same as orthogonal matrix. So a unitary
matrix is a generalization of orthogonal matrices in complex numbers. In the same sense,
identity matrix is a unitary matrix because identity matrix is a real matrix satisfying this
property; so it is not only orthogonal, it is unitary also. Now as | told you, real unitary
matrix is orthogonal matrix because for real matrix, A bar transpose is nothing but A

transpose. So this property will be satisfied.
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Now the example which | am considering here is a matrix A, complex matrix - 0
minus i, I, 0 - so 2 by 2 matrix. Then it is A bar transpose: this remains 0, but minus i
becomes minus I, here minus i is i and minus i transpose is i. So this A bar transpose: for
what | have done is | have first taken the conjugate - so conjugate of this is 0, minus i I, i
minus I, 0 0 and then | take the transpose. So this row becomes this column and this row
becomes this column; so this is A bar transpose. If | multiply the two — A, A bar
transpose - then one can check that 0 multiplied by 0 and minus i multiplied by i is 1 and
one can check other elements also. If we multiply first row by second column, this is O.

We multiply the second row by first column, this again is 0.

But if you multiply second row second column - i multiplied by minus i - is minus i
square which isl. So we have 1. So this is an identity matrix. Now a matrix multiplication
- 50 one can very easily check that A bar transpose multiplied by A; that means whether
you multiply it on the left hand side or on the right hand side, the result will be the same.

One can check it easily and on this basis, one can say that A is a unitary matrix.

35



(Refer Slide Time: 51:24)

Normal Matrices

AA=AA

* Hermitian matrices
« Skew Hermitian matrices
« Unitary matrices

« Symmetric matrices
« Skew Symmetric matrices
« Orthogonal matrices

After this, | introduce normal matrices. Normal matrices are those matrices in which A A
star - A star is A bar transpose - so A A star is the same as A star A. That means when
you multiply A by its A star - whether left or right - they are the same. Now if it becomes
1, identity; if A A star becomes identity, it becomes unitary matrix. If A becomes real,
then it becomes orthogonal matrix. So basically normal matrices are the generalization of
orthogonal matrices and unitary matrices. So the examples of normal matrices: the
Hermitian matrix. For Hermitian matrix A A bar, A A star - what is A star? A star is a
same as A, so basically A A star for Hermitian matrix is A square and we know whether

we post multiply or pre multiply, the result is the same.

So, Hermitian matrices are normal matrices. Similarly for skew symmetric matrices, this
is A - A bar star is minus of A, so whether you multiplied post or ah post multiply or pre
multiply the result will be the same. Only thing is difference of minus will come here as
well as here. So, Skew symmetric matrices are also normal matrices. Similarly one can
prove that unitary matrices are also normal matrices. In fact for unitary matrix, we have
one more addition thing that A A bar A A star is equal to identity. Now this is the case
when we are talking about complex matrices. But when we are having real matrices, then

symmetric matrix A A bar A A transpose - this bar doesn’t have any meaning in the case
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of symmetric in the real matrices - so A A bar A A transpose is equal to A transpose A
and they are same. Similarly, one can prove this result that Skew symmetric matrices are

normal matrices and orthogonal matrices are also normal matrices.

(Refer Slide Time: 53:50)

Inverse of a Matrix

Bis inverseof A B=A"

AB=BA=|

Matrix A is non singular or invertible if
inverse of A exists

Matrix A is singular or non invertible if
inverse of A does not exists

Then another important concept in matrices is the inverse of a matrix. See we have
already defined additive inverse; that means, if | have a matrix A, then the matrix B is
called the additive inverse of A. If the sum of A plus B is an identity - and in the case of
additive identity - it is 0. So A plus B is equal to I, A plus B is equal to O - that is the
additive inverse of the given matrix. But when it comes to multiplication, then we say
that B is inverse of A. We write B as A inverse. If A B and B A are the same and they are
equal to I - so if I multiply A B and it gives me I, whether pre multiply or post multiply it
should give me I - so if we have such a matrix B, then we say B is inverse of A.

So with this, we have obtained the existence of multiplicative inverse of a given matrix.
Now this is not as simple as we had in the case of addition of matrices. Now we say that
matrix this is a very important property of matrices. We say a matrix A is non singular or
we say it is invertible if inverse of A exists. It may not exist for all the matrices for all the

given matrix A, because first thing is A has to be a square matrix only when A B and B A
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are possible. So it is doesn’t exist for all matrices - it has to be square matrix first - and
even if it is a square matrix, still and the product may not be possible. The product may
not be possible or product may not be identity. So every matrix is for every matrix, you
cannot find such an inverse B. So we say those class of matrices for which you can find
inverse those class of matrices are invertible matrices or we say the matrix is a non
singular matrix. On the other hand, we say a matrix A is singular or non invertible if
inverse of A does not exist. So square matrix is singular or non invertible, if inverse of A
does not exist. If the matrix is not a square matrix, then of course there is no question that

inverse will exist.

(Refer Slide Time: 56:24)

Now, so for example we consider 2 by 2 matrix A as 4, minus 1 in the first row, minus 3,
1 in the second row; then my claim is that A inverse is this. How I find is that’s a
different issue, but at the moment my claim is that A inverse is the inverse of this. So Let
us check whether my claim is correct or not. So what | do is | perform the multiplication
A and A inverse; A is this and A inverse is this. If I multiply this first row by first
column, the result is 1; first row second column the result is 0: 4 minus 4 - 0; minus 3
1,13-0;minus 3 1and 14 - the result is 1. So A A inverse is identity; but this not

enough. One has to prove that A inverse A is also identity.
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So, | again consider A as this and A inverse as this. Multiply them and one can prove that
this is also identity matrix. So we can say A inverse is the same as A A inverse and both
of them are identity matrices. So we say this matrix is the inverse of this matrix A or we
say for this given matrix A, this is A inverse. So this matrix A is non singular or we say

this matrix is invertible.

Towards the end of my lecture, | like to summarize what we have done today. Starting
with the expression of the form A cube minus 5 A minus I, | have introduced i have
introduced triangular matrices. Then, | have performed various operations on triangular
matrices. | have introduced special types of matrices: the Hermitian matrix, the
symmetric matrices, Skew symmetric matrix, Skew Hermitian matrix and then
orthogonal matrix, unitary matrices and finally the normal matrices; and towards the end,
| have introduced the inverse of a given matrix and | have introduced the concept of non
singular matrices. All these concepts - you will find application in later part of your
course. My next lecture will be on determinants and we will be seeing that how these
concepts will be useful in solving equations and they will be useful in other branches of

science, and generally. Thank you.

39



