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Lecture - 2 

Matrix Algebra Part- 2 

 

Welcome viewers! This is my second lecture on matrix algebra. In my first lecture on 

matrix algebra, I have introduced various concepts related to matrices. I have defined 

matrices; I have introduced various operations on matrices. 
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I have introduced addition of 2  matrices and its various properties. After that, I have 

introduced multiplication of matrix by a scalar quantity. Then multiplication of 2  

matrices has been defined and we have discussed that matrix multiplication is not 

commutative. We have discussed the associative property and distributive property of 

matrices. We have introduced how we multiply a matrix by itself and what is the meaning 

of A square. I have given A raise to power p. After introducing all these things, now we 

are in a position to discuss expressions of the form A square plus 5  A minus 3  and so on. 

So to start with, let us discuss what’s the meaning of A cube minus 5 A minus I. 
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I happens to be the identity matrix. A has to be a square matrix; so that this expression 

becomes meaningful. The order of A and the identity matrix I must be the same. Let us 

compute this for the matrix A. Now to compute A cube, one  has to first compute the 

square A square as this. Now to compute this, if you multiply the first row and the first 

column of A, we get the element 3  and when the second row is multiplied by the second 

column, we get the element 5 as the element in the product matrix and the next element 

third row third column gives 4. Similarly, other elements can be computed. Once we get 

A square, we can compute A cube which is A square multiplied by A. Now the order of 

A is not important. Here, we can multiply A square by A or we multiply A by A square 

because this is associative and this gives me the result as this matrix. 
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Once I have computed A cube, the values can be substituted in this. So I have 2 times the 

value of A cube minus 5 times A and the identity matrix of order three. 2 multiplied by A 

can be computed as 6 8 16 in the first row; 4, 22 and 12 in the second row; 8, 12 and 

minus 6 in the third row and this minus 5 can be taken inside and this matrix is nothing 

but minus 5 A, and then this matrix. and What we have is the final result as this matrix. 

So if i had A as the 3  by 3  matrix, then 2  A cube minus 5  A minus I is also a 3  by 3  

matrix and it is computed as this. 
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Now I can introduce the meaning for A p multiplied by A q; by A p i mean to say A 

multiplied p times and A q means A multiplied q times. So if i multiply A p and A q, I 

have a matrix A raise to power p plus q. Now this can be proved easily. Like the first 

expression, A p is this - that is A multiplied p times - and this is A q, that is A multiplied 

q times. Now you can notice that total number of A’s they are p plus q and that is why we 

have A raised to power p plus q on the right hand side. Similarly A p when multiplied q 

times, we have a matrix A raised to power p q and this can be proved as this. Here A is p 

times, this is AP; this is another A p and this is to be multiplied q times. So and these are 

q such expressions and what we have on the right hand side, A raised to power p q. 
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Now AB raised to power p can also be computed as A raised to power p, B raised to 

power p, provided AB is equal to BA. Now that means the matrix A and B must be 

commutative. Now to prove this, I have to multiply AB p times; so these are AB matrices 

p times. Now what I can do is I can combine the first two terms and then these are 

remaining p minus 2 terms; I am writing the first two terms in this particular form, the 

reason being that matrix multiplication is associative. So I can very easily write down 

first two terms in this form. Then since matrix multiplication is commutative - that is 

what i have assumed here - so I can write down this BA as AB, and this gives me the 

result as A square B square. So this is written as A square B square and rest of the p 

minus 2 terms, same thing can be applied and finally what we have is A p multiplied by 

B p. 
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After this, we can introduce the transpose of a square matrix. The transpose of a square 

matrix is denoted by A raised to power A T and if aij is the typical element of the square 

matrix A, then its transpose is aji. That means, the row element is written as the column 

elements. So, rows and columns are interchanged. Now this is aij T is equal to aji for all 

values of i and j and what we get is a transpose matrix. For example, if i have a matrix A 

as 2  by 3  matrix, then its transpose will be 3  by 2 matrix. What I have done is the first 

row of A becomes first column of A transpose, while the second row of A become 

second column of A transpose. So rows and columns are interchanged; rows of A become 

columns of A transpose. Similarly, the columns of A become rows of A transpose. 
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Let us now discuss some properties of transpose of a matrix. We start with the first 

property A transpose and its transposes A. So if A is aij, then A transpose is aji as we 

have defined. Then A transpose and its transpose will again become aij and this is true for 

all i and j. So we have proved that A transpose transposes A. 
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Now the second property is that A plus B transpose is A transpose plus B transpose. For 

this, let us consider A as aij, matrix B as bij matrix, then C is sum of A and B. So cij - the 

typical element of C matrix - will be aij plus bij. Then the transpose of A plus B is C 

transpose and cij transpose will be cji. Columns and js are interchanged; now cji will be 

aji plus bji by definition. Then what is aji? aji is A transposition because A is defined as 

aij and bji is B transpose by this; so we have proved that C transpose is equal to A 

transpose plus B transpose, that is, A plus B transpose is equal to A transpose pus B 

transpose. 
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Next property is that scalar multiplication by k, and then the matrix A is transpose is k 

times A transpose. To prove this, I write down kA transpose as having a typical element k 

aij, because every element of A is to be multiplied by k by definition of this 

multiplication; then k aij transpose is equal to k - k is a scalar - so nothing will happen to 

this, but aij will become aji as we take the transpose; and this can also be written as k 

multiplied by aji. I am taking k outside, because this is common for all the elements; so 

finally, what we have is kA transpose. Next is AB transpose, that is multiply the 2  

matrices A and B and then take the transpose -  is the same as you take the transpose of B 

and then multiply it by A transpose. I consider the ijth element of AB transpose; A, B 
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multiplied and then T . Basically A B transpose is nothing but ji’th element of A B. i’th 

element of AB transpose is ji’th element of A B. Now by definition of multiplication, we 

can say that ji’th element of A B is nothing but j’th row of A is multiplied by i’th column 

of B, because we said that matrix multiplication is row multiplied by column. 
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So I can write this down in this manner. This is the j’th row and this is the i’th column of 

the matrix. So if I multiply a j 1 by b 1 j, aj 2  b 2  j, ajn bnj then what we have is this 

product. This is the typical element; now this term is rearranged in this particular manner. 

So this becomes this- I am writing as a row - and this these terms - I have arranged in 

columns. So this product is same as this product. But one can very easily observe that this 

is nothing but the i’th row of B transpose, while this is nothing but the j’the column of A 

transpose. That means this product represents the ij’th element of B transpose A 

transpose, as by the definition of matrix multiplication. So we have proved that A B 

transpose is B transpose and A transpose; this is important because A B multiplication is 

not commutative. So if we have to take transpose of A B, then B we have to first take the 

transpose of B and then multiplied by A transpose. So the order has changed if you take 

the transpose. So this is important. 
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Now, next concept is trace of a matrix. Now, trace of a given matrix A is defined as sum 

of its diagonal elements. Now Diagonal elements are identified by equal indices; so tray 

sum of diagonal elements is nothing but aii summed over the index i. That means, if the 

matrix A is given as this 3  by 3  matrix, then trace of A will be the sum of the diagonal 

elements this, this and this. That means trace of A is 6. Now we define some special type 

of matrices. 
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The first is the symmetric matrix. The symmetric matrix is the matrix which is having 

same which is same as its transpose. That is, A transpose is equal to A for a symmetric 

matrix and by this, I mean that ij’th element is same as ji’th element in a symmetric 

matrix. So if I have a square matrix A, then this matrix will be symmetric if a 2 1 is a 

same as a 1 2 and a 3 1 is a same as a 1 3  by the definition,  and a 3 2  is same as a 2  3; 

so this is the diagonal and these are the elements  below the diagonal and these are the 

elements above the diagonal. So the elements are mirror images - this element is same as 

this, this elements is same as this, this element is a same as this. So this is the typical 

property of symmetric matrices. 
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In skew symmetric matrices, we define A transpose as minus A. That is, the ij’th element 

of A is the same as negative of aji. That is, if I simplify then aij plus aji is 0. So in a skew 

symmetric matrix aij plus aji is 0 and aij is equal to minus aji. That means, the i’th 

element aii will be 0. Only then this is possible. Like this matrix B is skew symmetric; a 1 

2  is a same as a 2 1 with the negative sign; a 1 3  and a 31 they differ with negative sign; 

a 2 3 and a 3 2 they differ with negative sign, while on the diagonal all the elements are 0. 

So, this is a skew symmetric matrix. 
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This is an example - a 3 by 3 matrix; this matrix is symmetric matrix. One can see that 

these are the diagonal elements, and the upper side is the upper side is the mirror image is 

the image of the lower side. Here we have 2 - here also we have 2; this 3 is same as this 

element; this element is same as this element. So this matrix happens to be a symmetric 

matrix. Here aij is equal to aji for all the elements.  While this matrix is a skew symmetric 

matrix, look at the diagonal element; all elements are 0. This is 2, so here we have minus 

2. If this element is minus 3, this will this element is 3 and if this is 4, this is minus 4. So 

this is the diagonal element and this is the mirror image on this side. While this matrix C 

- we have this diagonal. This element is not the same as this; this element is not the same; 

this element is not the same. So this this matrix is not skew symmetric because this is 

now 0. Although this element is this and this element are rim mirror images, this is 4    

and this is minus 4;  but because this is minus 2  and this is 1, so this matrix is not skew 

symmetric. This matrix is not symmetric because this is 1 and here we have minus 2; so 

this is neither symmetric matrix nor skew symmetric matrix. 
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Now this is an important result. It states that any real matrix can be expressed as a sum of 

a symmetric matrix and a skew symmetric matrix. Now this can be proved easily. What 

we do is a typical element Cij of the matrix given matrix can be written as half Cij plus 

Cji, plus half Cij minus Cji. That means what I have done is I have added and subtracted 

Cji and the result is Cij. So i have manipulated Cij in this particular manner. Now I say 

that the D matrix is given by this half Cij plus Cji. One can notice that D is a symmetric 

matrix; the reason is if I take that transpose of D, D transpose, then this becomes Cji this 

becomes Cij and sum is commutative. So this is nothing but C plus C transpose so this is 

D transpose. So D and B transpose are same; so D is a symmetric matrix. And this matrix 

C and a half Cij minus Cji - I denoted by E - and I will prove that this E is half C minus C 

transpose. This is C and this is C transpose, but if I take the E transpose then half C 

transpose minus C - this becomes transpose; C transpose transpose is C. So what I have is 

minus half outside and then we will have C minus C transpose and the result is E with the 

minus sign with the minus sign. So E is skew symmetric matrix. So the matrix C is 

represented as a sum of symmetric matrix and a skew symmetric matrix. 
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Now this I illustrate with an example. So if I have A matrix as 3  2  1 4    1 3  5     1 2  or 

3  by 3  matrix, then it’s a transpose will be 3 4 5 in the first row; first column becomes 

first row, second column become second row, third column becomes third row in A 

transpose matrix. Then D is half A plus A transpose; if you sum this up, 3 plus 3  by 2  is 

3, 2  plus 4 by 2  is 3, 1 plus 5 divided by 2 is 3. Similarly other elements can be 

computed; so this is D and one can notice that this matrix is symmetric. This 3 and this 3  

are the same, this 3  and this 3  are the same, this 2 and this 2 are the same; so this is 

symmetric matrix. 
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Now if you compute, the matrix E is half of A minus A transpose for the given matrix. 

Then it comes out to be this 3  by 3  matrix and one can note down that this matrix is 

symmetric - a skew symmetric; this is minus 1 so this is 1, this is minus 2  so this is 2  

this is 1 and this is minus 1 and the diagonal elements all are 0. So this is a skew 

symmetric matrix. So the I have written this square matrix A as this symmetric matrix 

plus this and a skew symmetric. So any square matrix can be written as a sum of a 

symmetric matrix and a skew symmetric matrix. 
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Then one can prove that A multiplied by A transpose is always symmetric. To prove this, 

we start with AA transpose and its transpose. If this comes out to be AA transpose then 

we have proved the result.  So to prove this, I start with AA transpose transpose as A 

transpose transpose. This is the B matrix, this is AB; so this is B transpose A transpose. 

So I had A transpose transpose and A transpose but i have already proved that A 

transpose transpose is nothing but A, so this multiplication is nothing but A A transpose. 

So AA transpose transpose is the same as AA transpose and that is a basic property of 

symmetric matrices; Enhance We can say that AA transposes a symmetric matrix. 
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Now A plus A transpose is always symmetric. Similarly A minus A transpose is skew 

symmetric. These are the properties one can very easily prove; then the next property is - 

this this can be easily proved - A minus A transpose transpose is equal to A transpose 

minus A transpose transpose I have written as A is equal to - I have taken minus outside -  

so the A minus A transpose. So what I have proved is A minus A transpose transpose as 

minus times A minus A transpose and that proves the skew symmetric property of A 

minus A transpose. 

 

 

 

 

 

 

 

 

 

 

 



 18 

(Refer Slide Time: 22:51) 

 

 

Now for triangular matrices, I consider a square matrix A of size m by n. Now in this 

square matrix, one may observe that the elements which appear in the diagonal they all 

have row index equal to column index. Like the elements which I have shown in this box, 

the first element is a 1 1, its row index and column index they are equal to 1; the second 

element a 2  2,  row index, column index they are same and the last element amn - here 

also the row index and column index are the same. So this is the typical characteristic 

diagonal elements that i and j are equal, but if you consider this set of elements in the 

matrix then one may easily notice that the row index is bigger than the column index for 

each and every element here.  

 

Like if we consider the element a 2 1, then the row index 2  is bigger than the column 

index 1. Similarly for this, n is bigger than 1; same thing happens here and is this is true 

for all elements appearing in this. So we say that aij - if it appears in the lower side of the 

diagonal then i is greater than j. Similarly, if you consider the upper side of the diagonal 

then all elements have row index smaller than j like a 1 2. The row index 1 is smaller than 

the its column index 2. Same things happens for a 1 and a 2  and and so on. So for all the 

elements which appear in the upper side of the diagonal i is less than j. 
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Now on the basis of this, I can define upper triangular matrix. Now in this square matrix, 

if we consider the element shown in this triangular box, all elements either they are on 

the upper side of the diagonal or they are on the diagonal. So I define an upper triangular 

matrix is the one in which all elements which appear on the lower side of the diagonal 

that is aij is 0 - i greater than j, i greater than j, i is greater than j, i is greater than j; for all 

these elements they are 0 and a non 0 elements appear only in the upper side of the 

diagonal right. So the upper triangular matrix is one where non 0 elements appear on the 

upper side of the diagonal, that is diagonal including and the triangle. 

 

 For example in this square matrix, all the elements which appear on the lower side of the 

diagonal they are 0. aij is 0 when i is greater than j and all the elements which are either 

on the diagonal or on the upper side they are non 0. Like aij is not 0 when i is less than 

equal to j, this equality is taken for the diagonal elements. So this matrix is an upper 

triangular matrix; so elements on the upper side they are non 0. 
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Similarly one can define a lower triangular matrix. So if in the square matrix A, if the non 

0 elements appear in this triangular box only and the outside all these the elements are 0;  

then that matrix is called a lower triangular matrix. By this, I mean to say that aij is 0       

whenever i is less than j. You can notice that these are the elements which have to be 0. 

For them i is less than j, 1 is less than 2, 1 is less than n. So all these elements have to be 

0 for a lower triangular matrix but the elements which are inside, for them i is either 

equal to j for the diagonal or i is greater than j and these elements are non 0. For example, 

we have this lower triangular matrix here all these elements are 0 and non 0 elements 

appear in the lower triangle. 
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Now these triangular matrices appear in many engineering applications and various 

properties of these matrices are useful. For that purpose, we will discussing properties of 

triangular matrices. Now the first property we will be like discuss is that sum of 2  lower 

triangular matrices is also a lower triangular matrix. Now this, I can prove by simple fact 

that aij and bij are 0 if they are at the lower side. That means i is less than j; then this aij 

and bij are 0 for lower triangular matrix whenever i is less than j. Then so will be cij 

and that proves that the sum matrix will also be a lower triangular matrix. Now similar 

result is obtained for the upper triangular matrix and that can be proved on the same lines 

and the result is that sum of two upper triangular matrices is also an upper triangular 

matrix. Now this is regarding the sum of 2 triangular matrices. Now this result is that 

product of 2  upper triangular matrices is also an upper triangular matrix. 
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Now to prove this result, I consider 2  upper triangular matrices - A and B. Now since 

they are upper triangular matrices, so we assume that aij and bij are 0 whenever i is 

greater than j. Now we will prove that the product matrix will also be an upper triangular 

matrix; that means the product element cij will be 0 whenever i is greater than j and non 0       

whenever i is less than equal to j. For this purpose, I consider a typical element cij of the 

matrix. Now this cij element is obtained actually from the product; so to obtain cij i have 

to multiply the i’th row of the matrix A by the j’th column of matrix B.  

 

So if I write down the i’th element, i’th row of a matrix A - and this is the j’th column of 

matrix B - notice that some of the elements in this mat in this row matrix they are orange 

and some of the elements here are also orange. Actually they denote that these are the 

elements which are 0. They are 0 because for all these elements - i less than j - they are 0. 

While i greater than j, they are non 0. Same thing is applicable here. Now if I multiply 

them, then the product is obtained as cij is equal to ai 1 b 1 j, ai 2  b 2  j, aij bjj. aij bjj 

Then we have this element multiplied by this element and so on. ain multiplied by bnj 

will be the last element. Now one can notice that in this, every term involves an orange 

element that means 0. So this is 0 because of this 0; this is 0 because of this 0; this term is 

0       because this term is 0  and here both of them are 0. Same thing happens here and 
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that means cij is 0 whenever i is greater than j. Now we have to prove that on the upper 

triangle all the elements need not be 0.        
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So for this purpose, to show that the ah elements cij appearing on the upper side of the 

diagonal cij is not 0 whenever i is less than equal to j. We consider this element cij 

whenever i is less than equal to j here since i is less than j. So one may notice that aii 

comes first, then aij because i is less than equal to j. So all these elements are 0 but these 

elements are not 0. The same thing appears here: j comes first - bij a comes first - and bjj 

comes next. So these elements are non 0. So when you take the product cij,  ai 1 

multiplied by b 1 j - it is 0, because the i 1 is 0 - ai 2  multiplied by b 2  j  - it is 0       

because this is 0 - ai 3  b 3  j is 0, but aii bij this is not 0.  Similarly ai plus 1 ai - ai plus 1 

bi plus 1 j is not 0; the next element is not 0  and up to bjj all elements will be 

contributing while after this these terms will be 0. So what we have is bij plus 1 bj plus 1 

j - this is 0 - and the same thing happens with the last element ain bnj.  

 

So all these terms will not be contributing - these terms will not be contributing; cij is not 

0 because sum of these terms will not be 0. So cij is not 0 when i is less than equal to j; 

that proves our result that sum of 2  upper triangular matrices is also an upper triangular 
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matrix. Now the similar result can be obtained for lower triangular matrices, that means 

sum of 2 lower triangular matrix is a lower triangular matrix and product of 2 lower 

triangular matrix is also a lower triangular matrix. After this we come to the next concept 

complex matrices/. 
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Viewers, so far we were discussing matrices which have real elements. But they can be 

complex also and such matrices come under complex matrices. So if we have a matrix 

with complex entities then we have a complex matrix. For example, this 2 by 2  matrix its 

ah first row second element is I - the initial number - while the second row has 1 plus i 

and 2  plus I - they are complex numbers; so this a matrix having complex entities. So it 

is a complex matrix. Now we have established number of results for real matrices. 

Similar results can be obtained for complex matrices. We can add 2 complex matrices  

and one can prove on the same lines that addition of complex matrices is commutative 

and proof is not difficult because real numbers are commutative.  

 

So every element of real symmetric real matrix is a commutative; same thing happens 

with complex matrices. Since we complex numbers are commutative in nature and so are 

the complex matrices, similarly one can prove the associativity of addition of matrices if 



 25 

the real matrices are associative. Sum of two sum of real matrices are associative; so is 

sum of complex matrices are also associative. As far as identity matrices are concerned 

we can define identity matrix as the same additive identity; this works for complex 

number also. Additive inverse can also be defined on the same lines, that is additive 

inverse of a given matrix is the one which gives on addition the null matrix. So all these 

concepts are in line. 
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Now when it comes to multiplication by scalar then k may be this scalar k may be 

complex or it may be real and when we multiply k by a complex matrix then the result 

will be a complex matrix. Whether it is real or not, the result will be complex. Now when 

it comes to multiplication of matrices, then again it is row multiplied by column 

multiplication as usual and again multiplication of 2 matrices will again be complex. So 

all those properties which we have proved for real matrices they are applicable; they are 

non commutative as we have proved for real matrices; they are associated because 

complex numbers are associative - you can add them in any order. Similarly the existence 

of identity matrix - the identity matrix which works for matrix multiplication for real 

matrices - that works for complex matrices also. 
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So we define a complex conjugate of a matrix. So if we have a matrix Aij, then complex 

conjugate of a matrix is denoted by a bar ij and its element is aij bar; that means the 

element is the complex conjugate of the element Aij. So the elements of complex 

conjugate aij bar is the complex conjugate of corresponding matrix. Like if I have a 

matrix A consisting of complex numbers, then its conjugate A bar will be given by this 

matrix; you may notice that 1 plus i is the first element in the first row and 1 minus i is 

the is the complex conjugate of 1 plus i appearing in the first row first column. 2 minus i  

-its complex conjugate is 2 plus I; conjugate means the imaginary part will be multiplied 

by minus 1.  

 

So 2 minus i and here we have 2 plus i and this is actually true for each and every 

element. When it comes to the next element 3, 3 is a real number - its complex conjugate 

remains the same. So this is not affected but 1 minus i here we have 1 plus I, 4    is real it 

is not affected. 2 minus i is the complex conjugate of 2 plus;  here we have I, here we 

have minus i. So that way this element - this matrix – is being given as A, then A bar - 

the complex conjugate - will be in this matrix and one may notice that A bar is equal to A 

for real matrix A. So we can extend this concept to real matrices also, but in that case a 

complex conjugate remains the same. 
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Now if given matrix is A as this, then we define A star as complex transpose matrix of A; 

complex transpose matrix is the one. It is the combination of 2 operations; we take the 

conjugate of individual item and then take its transpose. For example if A is this, then 1 

plus i is 1 minus i. This is appearing in the first row first column. But 2  minus i is the 

element appearing in the second row of the first column; its conjugate 2  plus i appears in 

the second row first column.  

 

So this row, this column and this row - they are been interchanged. That is why it is A 

star; so we denoted it by A bar transpose. Two operations are taking together: bar and 

transpose. This can be checked for other elements also. It is 1 minus I - 1 plus i - complex 

conjugate of this. This appears in the first row second row first column and this appears 

in the first row second column and one can check it for each and every element here. This 

3 - its conjugate is 3; this appears in first row third column, this appears in third row first 

column. 
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Now on the basis of that, we can introduce Hermitian matrices. A Hermitian matrix is a 

square matrix in which the matrix A is same as its complex conjugate transpose. So A bar 

transpose is same as A for a Hermitian matrix. As I told you earlier, that A bar is equal to 

A for real matrix; so if a real symmetric matrix is Hermitian also because the real 

symmetric matrix will satisfy this property trivially. So a real symmetric matrix is a 

Hermitian matrix, but this is not true for complex matrices. 
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Now when it comes to Skew Hermitian matrix, then it is defined as a square matrix A 

which is equal to minus times A bar transpose; that means the element aij in A becomes 

minus aij bar in A bar transpose. So if this property is satisfied, then we say the matrix is 

a Skew Hermitian matrix. Now this is the result which can be said about real matrices 

that a real Skew Hermitian matrix is Skew symmetric, because the for a Skew symmetric 

matrix which is real, A bar transpose is equal to A bar n that gives us a Skew symmetric 

matrix. 
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Now if we consider this 3  by 3  complex matrix, then its A bar transpose is 1 plus I, 1 

minus I, 2  minus I, 2  plus I, 3  and we have 3  here; one minus I, 1 plus I, 4    and we 

have 4, 2  plus I, 2  minus I; Then we have i here minus I, 2  and 2, 4 minus 2  i and 4    

plus 2  i. Now any matrix A can be written as this sum - like we have done for real 

matrices. A is written as half A plus A bar transpose plus half A minus A bar transpose. 

So what I have done is I have added and subtracted this from this - from the matrix A. 

Now one can prove that the first part -  half A plus A bar transpose - is Hermitian, while 

this part is Skew Hermitian. So what I do is I take this part as H - half A plus A bar 

transpose; for given this A, I add A bar transpose and take half of it so I have this matrix. 

Now in this matrix - this is this matrix is Skew Hermitian - you notice that this is 



 30 

symmetric and these are the conjugates. This and this are same; 3  plus i by 2  is here 3  

minus i by 2. I have taken the conjugate and then transpose. Then 4 minus i by 2 - here I 

have 4 plus i by 2. So this matrix is Hermitian. If you take its H bar transpose, you will 

have the same matrix. So this matrix is Hermitian. These elements are H bar transpose; 

they are equal; same thing happens here. It is the diagonal and that means H bar transpose 

is equal to H and this proves that A is Hermitian. 

 

(Refer Slide Time: 43:52) 

 

So with the given matrix A, A bar transpose is computed as this. Then the matrix S which 

is half of A minus A bar transpose is computed from these two matrices. So we have 1 

plus i and 1 minus i - so it is subtraction - so it is i here; 2  minus i minus 1 plus i by 2  is 

this element; 3 and this minus i becomes plus I, so 3  plus i by 2. So that is how we 

calculate this matrix S and this is the diagonal element. Here we can notice that S bar 

transpose is equal to minus S and S is a Skew symmetric matrix on the spaces. 
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So what I have done is I have calculated H, I have calculated S. H is half of A plus A bar 

transpose, S is half of A minus A bar transpose and my claim is that H is Hermitian and S 

is Skew Hermitian and sum of these two matrices is the given matrix A. One can check: 1 

plus i is 1 plus I; so H plus S is A. So any matrix which is complex can be written as sum 

of a Hermitian matrix and a Skew Hermitian matrix.  

 

Now one can notice that in Hermitian matrix, the diagonal elements have to be real 

because if they are not real then they cannot satisfy the property that H is equal to H bar 

transpose. Similarly on this Skew symmetric matrix, these elements have to be imaginary 

and of course, they have to be complex conjugate. This and this - they have to be minus 

of complex conjugate, because S has to be Skews Hermitian. So this is being shown 1 

plus i is 1 plus I; 3  minus i by 2 ,3  plus i by 2  is 3  and so on. 
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Now after this, I introduce orthogonal matrices. Orthogonal matrices are used extensively 

in mathematics and we define a square matrix to be orthogonal if it satisfies this property; 

that is, A and A transpose - if they multiply together - they give us identity matrix. That is 

A A transpose, is equal to A transpose A, is equal to I. This property is actually satisfied 

by identity matrix. One can actually work out A and A transpose; A happens to be 

identity matrix, its transpose is also identity matrix because identity matrix are diagonal 

matrix. So the transpose will also be the same and multiply identity matrix with itself is 

again an identity matrix; so identity matrix is a good example of orthogonal matrices. 
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The other example is, we have A matrix 2 by 2; cos theta, minus sin theta in the first row; 

sin theta, cos theta in the second row. Then A transpose happens to be cos theta, sin theta; 

this column becomes this row and this column becomes this row. If you multiply the 2 

cos square theta plus sin square theta, that is, 1 cos theta multiplied by sin theta minus sin 

theta multiplied by cos theta, they will cancel out; so this element is 0. Similarly if you 

multiply this sin theta cos theta by sin theta cos theta, this column will have 0 and finally 

when sin theta multiplied by sin theta - sin square theta-  cos theta multiplied cos theta - 

cos square theta - and the result is one. So A A transpose is nothing but identity matrix; 

so we can say that the matrix A is an orthogonal matrix. 
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Now, unitary matrices are square matrices which satisfy this property: that is, A 

multiplied by A bar transpose is equal to A bar transpose A and the product is I. Now if 

the matrix A is complex, only then A bar transpose is a mini; if it is a real then A A bar 

transpose is nothing but A transpose itself and in that case it is A A transpose is equal to 

A transpose A is equal to I; that means, it is the same as orthogonal matrix. So a unitary 

matrix is a generalization of orthogonal matrices in complex numbers. In the same sense, 

identity matrix is a unitary matrix because identity matrix is a real matrix satisfying this 

property; so it is not only orthogonal, it is unitary also. Now as I told you, real unitary 

matrix is orthogonal matrix because for real matrix, A bar transpose is nothing but A 

transpose. So this property will be satisfied. 
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Now the example which I am considering here is a matrix A, complex matrix - 0       

minus i, I, 0 - so 2  by 2  matrix. Then it is A bar transpose: this remains 0, but minus i 

becomes minus I, here minus i is i and minus i transpose is i. So this A bar transpose: for 

what I have done is I have first taken the conjugate - so conjugate of this is 0, minus i I, i 

minus I, 0 0 and then I take the transpose. So this row becomes this column and this row 

becomes this column; so this is A bar transpose. If I multiply the two – A, A bar 

transpose - then one can check that 0 multiplied by 0 and minus i multiplied by i is 1 and 

one can check other elements also. If we multiply first row by second column, this is 0. 

We multiply the second row by first column, this again is 0. 

 

 But if you multiply second row second column - i multiplied by minus i - is minus i 

square which is1. So we have 1. So this is an identity matrix. Now a matrix multiplication 

- so one can very easily check that A bar transpose multiplied by A; that means whether 

you multiply it on the left hand side or on the right hand side, the result will be the same. 

One can check it easily and on this basis, one can say that A is a unitary matrix. 
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After this, I introduce normal matrices. Normal matrices are those matrices in which A A 

star - A star is A bar transpose - so A A star is the same as A star A. That means when 

you multiply A by its A star - whether left or right - they are the same. Now if it becomes 

1, identity; if A A star becomes identity, it becomes unitary matrix. If A becomes real, 

then it becomes orthogonal matrix. So basically normal matrices are the generalization of 

orthogonal matrices and unitary matrices. So the examples of normal matrices: the 

Hermitian matrix. For Hermitian matrix A A bar, A A star - what is A star? A star is a 

same as A; so basically A A star for Hermitian matrix is A square and we know whether 

we post multiply or pre multiply, the result is the same.  

 

So, Hermitian matrices are normal matrices. Similarly for skew symmetric matrices, this 

is A - A bar star is minus of A, so whether you multiplied post or ah post multiply or pre 

multiply the result will be the same. Only thing is difference of minus will come here as 

well as here. So, Skew symmetric matrices are also normal matrices. Similarly one can 

prove that unitary matrices are also normal matrices. In fact for unitary matrix, we have 

one more addition thing that A A bar A A star is equal to identity. Now this is the case 

when we are talking about complex matrices. But when we are having real matrices, then 

symmetric matrix A A bar A A transpose - this bar doesn’t have any meaning in the case 
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of symmetric in the real matrices - so A A bar A A transpose is equal to A transpose A 

and they are same. Similarly, one can prove this result that Skew symmetric matrices are 

normal matrices and orthogonal matrices are also normal matrices. 
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Then another important concept in matrices is the inverse of a matrix. See we have 

already defined additive inverse; that means, if I have a matrix A, then the matrix B is 

called the additive inverse of A. If the sum of A plus B is an identity - and in the case of 

additive identity - it is 0. So A plus B is equal to I, A plus B is equal to 0 - that is the 

additive inverse of the given matrix. But when it comes to multiplication, then we say 

that B is inverse of A. We write B as A inverse. If A B and B A are the same and they are 

equal to I - so if I multiply A B and it gives me I, whether pre multiply or post multiply it 

should give me I - so if we have such a matrix B, then we say B is inverse of A.  

 

So with this, we have obtained the existence of multiplicative inverse of a given matrix. 

Now this is not as simple as we had in the case of addition of matrices. Now we say that 

matrix this is a very important property of matrices. We say a matrix A is non singular or 

we say it is invertible if inverse of A exists. It may not exist for all the matrices for all the 

given matrix A, because first thing is A has to be a square matrix only when A B and B A 
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are possible. So it is doesn’t exist for all matrices - it has to be square matrix first - and 

even if it is a square matrix, still and the product may not be possible. The product may 

not be possible or product may not be identity. So every matrix is for every matrix, you 

cannot find such an inverse B. So we say those class of matrices for which you can find 

inverse those class of matrices are invertible matrices or we say the matrix is a non 

singular matrix. On the other hand, we say a matrix A is singular or non invertible if 

inverse of A does not exist. So square matrix is singular or non invertible, if inverse of A 

does not exist. If the matrix is not a square matrix, then of course there is no question that 

inverse will exist. 
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Now, so for example we consider 2 by 2  matrix A as 4, minus 1 in the first row, minus 3, 

1 in the second row; then my claim is that A inverse is this. How I find is that’s a 

different issue, but at the moment my claim is that A inverse is the inverse of this. So Let 

us check whether my claim is correct or not. So what I do is I perform the multiplication 

A and A inverse; A is this and A inverse is this. If I multiply this first row by first 

column, the result is 1; first row second column the result is 0:  4  minus 4 -  0; minus 3  

1, 1 3 – 0; minus 3  1 and 1 4 - the result is 1. So A A inverse is identity; but this not 

enough. One has to prove that A inverse A is also identity.  
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So, I again consider A as this and A inverse as this. Multiply them and one can prove that 

this is also identity matrix. So we can say A inverse is the same as A A inverse and both 

of them are identity matrices. So we say this matrix is the inverse of this matrix A or we 

say for this given matrix A, this is A inverse. So this matrix A is non singular or we say 

this matrix is invertible.  

 

Towards the end of my lecture, I like to summarize what we have done today. Starting 

with the expression of the form A cube minus 5 A minus I, I have introduced i have 

introduced triangular matrices. Then, I have performed various operations on triangular 

matrices. I have introduced special types of matrices:  the Hermitian matrix, the 

symmetric matrices, Skew symmetric matrix, Skew Hermitian matrix and then 

orthogonal matrix, unitary matrices and finally the normal matrices; and towards the end, 

I have introduced the inverse of a given matrix and I have introduced the concept of non 

singular matrices. All these concepts - you will find application in later part of your 

course. My next lecture will be on determinants and we will be seeing that how these 

concepts will be useful in solving equations and they will be useful in other branches of 

science, and generally. Thank you. 


